Cargando…
Optimization of running-in surface morphology parameters based on the AutoML model
Running-in is an important and relatively complicated process. The surface morphology prior to running-in affects the surface morphology following the running-in process, which in turn influences the friction and wear characteristics of the workpiece. Therefore, the establishment of a model for runn...
Autores principales: | Ge, Guangyuan, Liu, Fenfen, Zhang, Gengpei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489728/ https://www.ncbi.nlm.nih.gov/pubmed/34606518 http://dx.doi.org/10.1371/journal.pone.0257850 |
Ejemplares similares
-
AutoML for Fast Simulation
por: Nascimento Ferreira, Poliana
Publicado: (2021) -
Review of ML and AutoML Solutions to Forecast Time-Series Data
por: Alsharef, Ahmad, et al.
Publicado: (2022) -
Landslide Susceptibility Assessment Using an AutoML Framework
por: Bruzón, Adrián G., et al.
Publicado: (2021) -
An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
por: Vincent, Amala Mary, et al.
Publicado: (2023) -
Net-Net Auto Machine Learning (AutoML) Prediction of Complex Ecosystems
por: Barreiro, Enrique, et al.
Publicado: (2018)