Cargando…

Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...

Descripción completa

Detalles Bibliográficos
Autores principales: Whiteway, Matthew R., Biderman, Dan, Friedman, Yoni, Dipoppa, Mario, Buchanan, E. Kelly, Wu, Anqi, Zhou, John, Bonacchi, Niccolò, Miska, Nathaniel J., Noel, Jean-Paul, Rodriguez, Erica, Schartner, Michael, Socha, Karolina, Urai, Anne E., Salzman, C. Daniel, Cunningham, John P., Paninski, Liam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489729/
https://www.ncbi.nlm.nih.gov/pubmed/34550974
http://dx.doi.org/10.1371/journal.pcbi.1009439
_version_ 1784578385572265984
author Whiteway, Matthew R.
Biderman, Dan
Friedman, Yoni
Dipoppa, Mario
Buchanan, E. Kelly
Wu, Anqi
Zhou, John
Bonacchi, Niccolò
Miska, Nathaniel J.
Noel, Jean-Paul
Rodriguez, Erica
Schartner, Michael
Socha, Karolina
Urai, Anne E.
Salzman, C. Daniel
Cunningham, John P.
Paninski, Liam
author_facet Whiteway, Matthew R.
Biderman, Dan
Friedman, Yoni
Dipoppa, Mario
Buchanan, E. Kelly
Wu, Anqi
Zhou, John
Bonacchi, Niccolò
Miska, Nathaniel J.
Noel, Jean-Paul
Rodriguez, Erica
Schartner, Michael
Socha, Karolina
Urai, Anne E.
Salzman, C. Daniel
Cunningham, John P.
Paninski, Liam
author_sort Whiteway, Matthew R.
collection PubMed
description Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
format Online
Article
Text
id pubmed-8489729
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84897292021-10-05 Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders Whiteway, Matthew R. Biderman, Dan Friedman, Yoni Dipoppa, Mario Buchanan, E. Kelly Wu, Anqi Zhou, John Bonacchi, Niccolò Miska, Nathaniel J. Noel, Jean-Paul Rodriguez, Erica Schartner, Michael Socha, Karolina Urai, Anne E. Salzman, C. Daniel Cunningham, John P. Paninski, Liam PLoS Comput Biol Research Article Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone. Public Library of Science 2021-09-22 /pmc/articles/PMC8489729/ /pubmed/34550974 http://dx.doi.org/10.1371/journal.pcbi.1009439 Text en © 2021 Whiteway et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Whiteway, Matthew R.
Biderman, Dan
Friedman, Yoni
Dipoppa, Mario
Buchanan, E. Kelly
Wu, Anqi
Zhou, John
Bonacchi, Niccolò
Miska, Nathaniel J.
Noel, Jean-Paul
Rodriguez, Erica
Schartner, Michael
Socha, Karolina
Urai, Anne E.
Salzman, C. Daniel
Cunningham, John P.
Paninski, Liam
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title_full Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title_fullStr Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title_full_unstemmed Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title_short Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
title_sort partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489729/
https://www.ncbi.nlm.nih.gov/pubmed/34550974
http://dx.doi.org/10.1371/journal.pcbi.1009439
work_keys_str_mv AT whitewaymatthewr partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT bidermandan partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT friedmanyoni partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT dipoppamario partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT buchananekelly partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT wuanqi partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT zhoujohn partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT bonacchiniccolo partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT miskanathanielj partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT noeljeanpaul partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT rodriguezerica partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT schartnermichael partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT sochakarolina partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT uraiannee partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT salzmancdaniel partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT cunninghamjohnp partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders
AT paninskiliam partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders