Cargando…
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489729/ https://www.ncbi.nlm.nih.gov/pubmed/34550974 http://dx.doi.org/10.1371/journal.pcbi.1009439 |
_version_ | 1784578385572265984 |
---|---|
author | Whiteway, Matthew R. Biderman, Dan Friedman, Yoni Dipoppa, Mario Buchanan, E. Kelly Wu, Anqi Zhou, John Bonacchi, Niccolò Miska, Nathaniel J. Noel, Jean-Paul Rodriguez, Erica Schartner, Michael Socha, Karolina Urai, Anne E. Salzman, C. Daniel Cunningham, John P. Paninski, Liam |
author_facet | Whiteway, Matthew R. Biderman, Dan Friedman, Yoni Dipoppa, Mario Buchanan, E. Kelly Wu, Anqi Zhou, John Bonacchi, Niccolò Miska, Nathaniel J. Noel, Jean-Paul Rodriguez, Erica Schartner, Michael Socha, Karolina Urai, Anne E. Salzman, C. Daniel Cunningham, John P. Paninski, Liam |
author_sort | Whiteway, Matthew R. |
collection | PubMed |
description | Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone. |
format | Online Article Text |
id | pubmed-8489729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84897292021-10-05 Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders Whiteway, Matthew R. Biderman, Dan Friedman, Yoni Dipoppa, Mario Buchanan, E. Kelly Wu, Anqi Zhou, John Bonacchi, Niccolò Miska, Nathaniel J. Noel, Jean-Paul Rodriguez, Erica Schartner, Michael Socha, Karolina Urai, Anne E. Salzman, C. Daniel Cunningham, John P. Paninski, Liam PLoS Comput Biol Research Article Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone. Public Library of Science 2021-09-22 /pmc/articles/PMC8489729/ /pubmed/34550974 http://dx.doi.org/10.1371/journal.pcbi.1009439 Text en © 2021 Whiteway et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Whiteway, Matthew R. Biderman, Dan Friedman, Yoni Dipoppa, Mario Buchanan, E. Kelly Wu, Anqi Zhou, John Bonacchi, Niccolò Miska, Nathaniel J. Noel, Jean-Paul Rodriguez, Erica Schartner, Michael Socha, Karolina Urai, Anne E. Salzman, C. Daniel Cunningham, John P. Paninski, Liam Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title_full | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title_fullStr | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title_full_unstemmed | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title_short | Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
title_sort | partitioning variability in animal behavioral videos using semi-supervised variational autoencoders |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489729/ https://www.ncbi.nlm.nih.gov/pubmed/34550974 http://dx.doi.org/10.1371/journal.pcbi.1009439 |
work_keys_str_mv | AT whitewaymatthewr partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT bidermandan partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT friedmanyoni partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT dipoppamario partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT buchananekelly partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT wuanqi partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT zhoujohn partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT bonacchiniccolo partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT miskanathanielj partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT noeljeanpaul partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT rodriguezerica partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT schartnermichael partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT sochakarolina partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT uraiannee partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT salzmancdaniel partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT cunninghamjohnp partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders AT paninskiliam partitioningvariabilityinanimalbehavioralvideosusingsemisupervisedvariationalautoencoders |