Cargando…

An AI-based auxiliary empirical antibiotic therapy model for children with bacterial pneumonia using low-dose chest CT images

PURPOSE: To construct an auxiliary empirical antibiotic therapy (EAT) multi-class classification model for children with bacterial pneumonia using radiomics features based on artificial intelligence and low-dose chest CT images. MATERIALS AND METHODS: Data were retrospectively collected from childre...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Mudan, Yu, Siwei, Yin, Xuntao, Zeng, Xianchun, Liu, Xinfeng, Shen, ZhiYan, Zhang, Xiaoyong, Huang, Chencui, Wang, Rongpin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490241/
https://www.ncbi.nlm.nih.gov/pubmed/34101118
http://dx.doi.org/10.1007/s11604-021-01136-2
Descripción
Sumario:PURPOSE: To construct an auxiliary empirical antibiotic therapy (EAT) multi-class classification model for children with bacterial pneumonia using radiomics features based on artificial intelligence and low-dose chest CT images. MATERIALS AND METHODS: Data were retrospectively collected from children with pathogen-confirmed bacterial pneumonia including Gram-positive bacterial pneumonia (122/389, 31%), Gram-negative bacterial pneumonia (159/389, 41%) and atypical bacterial pneumonia (108/389, 28%) from January 1 to June 30, 2019. Nine machine-learning models were separately evaluated based on radiomics features extracted from CT images; three optimal submodels were constructed and integrated to form a multi-class classification model. RESULTS: We selected five features to develop three radiomics submodels: a Gram-positive model, a Gram-negative model and an atypical model. The comprehensive radiomics model using support vector machine method yielded an average area under the curve (AUC) of 0.75 [95% confidence interval (CI), 0.65–0.83] and accuracy (ACC) of 0.58 [sensitivity (SEN), 0.57; specificity (SPE), 0.78] in the training set, and an average AUC of 0.73 (95% CI 0.61–0.79) and ACC of 0.54 (SEN, 0.52; SPE, 0.75) in the test set. CONCLUSION: This auxiliary EAT radiomics multi-class classification model was deserved to be researched in differential diagnosing bacterial pneumonias in children.