Cargando…
An AI-based auxiliary empirical antibiotic therapy model for children with bacterial pneumonia using low-dose chest CT images
PURPOSE: To construct an auxiliary empirical antibiotic therapy (EAT) multi-class classification model for children with bacterial pneumonia using radiomics features based on artificial intelligence and low-dose chest CT images. MATERIALS AND METHODS: Data were retrospectively collected from childre...
Autores principales: | Zhang, Mudan, Yu, Siwei, Yin, Xuntao, Zeng, Xianchun, Liu, Xinfeng, Shen, ZhiYan, Zhang, Xiaoyong, Huang, Chencui, Wang, Rongpin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490241/ https://www.ncbi.nlm.nih.gov/pubmed/34101118 http://dx.doi.org/10.1007/s11604-021-01136-2 |
Ejemplares similares
-
An AI-based radiomics nomogram for disease prognosis in patients with COVID-19 pneumonia using initial CT images and clinical indicators
por: Zhang, Mudan, et al.
Publicado: (2021) -
A radiomics based approach using adrenal gland and periadrenal fat CT images to allocate COVID-19 health care resources fairly
por: Zhang, Mudan, et al.
Publicado: (2023) -
FaNet: fast assessment network for the novel coronavirus (COVID-19) pneumonia based on 3D CT imaging and clinical symptoms
por: Huang, Zhenxing, et al.
Publicado: (2020) -
Severe COVID-19 Pneumonia: Assessing Inflammation Burden with Volume-rendered Chest CT
por: Tang, Lei, et al.
Publicado: (2020) -
AI detection of mild COVID-19 pneumonia from chest CT scans
por: Yao, Jin-Cao, et al.
Publicado: (2021)