Cargando…
Orchestrating and sharing large multimodal data for transparent and reproducible research
Reproducibility is essential to open science, as there is limited relevance for findings that can not be reproduced by independent research groups, regardless of its validity. It is therefore crucial for scientists to describe their experiments in sufficient detail so they can be reproduced, scrutin...
Autores principales: | Mammoliti, Anthony, Smirnov, Petr, Nakano, Minoru, Safikhani, Zhaleh, Eeles, Christopher, Seo, Heewon, Nair, Sisira Kadambat, Mer, Arvind S., Smith, Ian, Ho, Chantal, Beri, Gangesh, Kusko, Rebecca, Lin, Eva, Yu, Yihong, Martin, Scott, Hafner, Marc, Haibe-Kains, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490371/ https://www.ncbi.nlm.nih.gov/pubmed/34608132 http://dx.doi.org/10.1038/s41467-021-25974-w |
Ejemplares similares
-
PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis
por: Feizi, Nikta, et al.
Publicado: (2021) -
Creating reproducible pharmacogenomic analysis pipelines
por: Mammoliti, Anthony, et al.
Publicado: (2019) -
ToxicoDB: an integrated database to mine and visualize large-scale toxicogenomic datasets
por: Nair, Sisira Kadambat, et al.
Publicado: (2020) -
Machine learning approaches to drug response prediction: challenges and recent progress
por: Adam, George, et al.
Publicado: (2020) -
Evaluation of statistical approaches for association testing in noisy drug screening data
por: Smirnov, Petr, et al.
Publicado: (2022)