Cargando…
Clusters of science and health related Twitter users become more isolated during the COVID-19 pandemic
COVID-19 represents the most severe global crisis to date whose public conversation can be studied in real time. To do so, we use a data set of over 350 million tweets and retweets posted by over 26 million English speaking Twitter users from January 13 to June 7, 2020. We characterize the retweet n...
Autores principales: | Durazzi, Francesco, Müller, Martin, Salathé, Marcel, Remondini, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490394/ https://www.ncbi.nlm.nih.gov/pubmed/34608258 http://dx.doi.org/10.1038/s41598-021-99301-0 |
Ejemplares similares
-
Dynamics of social media behavior before and after SARS-CoV-2 infection
por: Durazzi, Francesco, et al.
Publicado: (2023) -
Mis-tweeting communication: a Vaccine Hesitancy analysis among twitter users in Italy
por: Gori, Davide, et al.
Publicado: (2021) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Detecting sentiment dynamics and clusters of Twitter users for trending topics in COVID-19 pandemic
por: Ahmed, Md Shoaib, et al.
Publicado: (2021) -
Are We Ready for the Arrival of the New COVID-19 Vaccinations? Great Promises and Unknown Challenges Still to Come
por: Gori, Davide, et al.
Publicado: (2021)