Cargando…
Efficient generative modeling of protein sequences using simple autoregressive models
Generative models emerge as promising candidates for novel sequence-data driven approaches to protein design, and for the extraction of structural and functional information about proteins deeply hidden in rapidly growing sequence databases. Here we propose simple autoregressive models as highly acc...
Autores principales: | Trinquier, Jeanne, Uguzzoni, Guido, Pagnani, Andrea, Zamponi, Francesco, Weigt, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490405/ https://www.ncbi.nlm.nih.gov/pubmed/34608136 http://dx.doi.org/10.1038/s41467-021-25756-4 |
Ejemplares similares
-
Author Correction: Efficient generative modeling of protein sequences using simple autoregressive models
por: Trinquier, Jeanne, et al.
Publicado: (2022) -
adabmDCA: adaptive Boltzmann machine learning for biological sequences
por: Muntoni, Anna Paola, et al.
Publicado: (2021) -
Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity
por: Asti, Lorenzo, et al.
Publicado: (2016) -
Generating interacting protein sequences using domain-to-domain translation
por: Meynard-Piganeau, Barthelemy, et al.
Publicado: (2023) -
Modeling Sequence-Space Exploration and Emergence of Epistatic Signals in Protein Evolution
por: Bisardi, Matteo, et al.
Publicado: (2021)