Cargando…
Quantum semi-supervised generative adversarial network for enhanced data classification
In this paper, we propose the quantum semi-supervised generative adversarial network (qSGAN). The system is composed of a quantum generator and a classical discriminator/classifier (D/C). The goal is to train both the generator and the D/C, so that the latter may get a high classification accuracy f...
Autores principales: | Nakaji, Kouhei, Yamamoto, Naoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490428/ https://www.ncbi.nlm.nih.gov/pubmed/34608219 http://dx.doi.org/10.1038/s41598-021-98933-6 |
Ejemplares similares
-
GSDA: Generative adversarial network-based semi-supervised data augmentation for ultrasound image classification
por: Liu, Zhaoshan, et al.
Publicado: (2023) -
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
por: Liu, Kun, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
por: Qian, Xiaoliang, et al.
Publicado: (2019) -
Healthy-unhealthy animal detection using semi-supervised generative adversarial network
por: Almal, Shubh, et al.
Publicado: (2023)