Cargando…
An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes
Clinical research networks (CRNs), made up of multiple healthcare systems each with patient data from several care sites, are beneficial for studying rare outcomes and increasing generalizability of results. While CRNs encourage sharing aggregate data across healthcare systems, individual systems wi...
Autores principales: | Edmondson, Mackenzie J., Luo, Chongliang, Duan, Rui, Maltenfort, Mitchell, Chen, Zhaoyi, Locke, Kenneth, Shults, Justine, Bian, Jiang, Ryan, Patrick B., Forrest, Christopher B., Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490431/ https://www.ncbi.nlm.nih.gov/pubmed/34608222 http://dx.doi.org/10.1038/s41598-021-99078-2 |
Ejemplares similares
-
A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
por: Feng, Cindy Xin
Publicado: (2021) -
On the equivalence of one‐inflated zero‐truncated and zero‐truncated one‐inflated count data likelihoods
por: Böhning, Dankmar
Publicado: (2022) -
Characterizing clinical pediatric obesity subtypes using electronic health record data
por: Campbell, Elizabeth A., et al.
Publicado: (2022) -
Zero‐inflated count distributions for capture–mark–reencounter data
por: Riecke, Thomas V., et al.
Publicado: (2022) -
Modeling road accident fatalities with underdispersion and zero-inflated counts
por: Simmachan, Teerawat, et al.
Publicado: (2022)