Cargando…
Tissue-based metabolomics reveals metabolic signatures and major metabolic pathways of gastric cancer with help of transcriptomic data from TCGA
Purpose: The aim of the present study was to screen differential metabolites of gastric cancer (GC) and identify the key metabolic pathways of GC. Methods: GC (n=28) and matched paracancerous (PC) tissues were collected, and LC-MS/MS analysis were performed to detect metabolites of GC and PC tissues...
Autores principales: | Wang, Yaqin, Chen, Wenchao, Li, Kun, Wu, Gang, Zhang, Wei, Ma, Peizhi, Feng, Siqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490861/ https://www.ncbi.nlm.nih.gov/pubmed/34549263 http://dx.doi.org/10.1042/BSR20211476 |
Ejemplares similares
-
A functional methylation signature to predict the prognosis of Chinese lung adenocarcinoma based on TCGA
por: Wang, Ke, et al.
Publicado: (2021) -
Machine learning analysis of TCGA cancer data
por: Liñares-Blanco, Jose, et al.
Publicado: (2021) -
Transcriptome analysis reveals a reprogramming energy metabolism-related signature to improve prognosis in colon cancer
por: Zhang, Xinxin, et al.
Publicado: (2020) -
Evaluation of FGFR1 as a diagnostic biomarker for ovarian cancer using TCGA and GEO datasets
por: Xiao, Huiting, et al.
Publicado: (2021) -
Characterization of bidirectional gene pairs in The Cancer Genome Atlas (TCGA) dataset
por: Tu, Juchuanli, et al.
Publicado: (2019)