Cargando…
Fibroblast Growth Factor 21 and Its Association With Oxidative Stress and Lipid Profile in Type 2 Diabetes Mellitus
Introduction Cardiovascular diseases are the leading cause of mortality in diabetic patients. Oxidative stress and mitochondrial dysfunction lead to diabetic cardiomyopathy (DCM) characterized by impaired cardiac structure and function. Hyperglycemia causes oxidative stress, which can lead to microv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490936/ https://www.ncbi.nlm.nih.gov/pubmed/34659937 http://dx.doi.org/10.7759/cureus.17723 |
Sumario: | Introduction Cardiovascular diseases are the leading cause of mortality in diabetic patients. Oxidative stress and mitochondrial dysfunction lead to diabetic cardiomyopathy (DCM) characterized by impaired cardiac structure and function. Hyperglycemia causes oxidative stress, which can lead to microvascular complications, macrovascular complications, and atherosclerosis. Peripheral tissues produce fibroblast growth factor 21 (FGF-21), which has anti-inflammatory properties, increases oxidation of fatty acids, and improves insulin sensitivity. Its increased levels are found in metabolic syndrome and type 2 diabetes mellitus and may also lead to coronary heart disease. Our study sought to measure the serum FGF-21 levels and their associations with lipid profile parameters and oxidative stress in patients with type 2 diabetes mellitus. Methodology One-hundred fifty (150) patients of both genders with type 2 diabetes mellitus were recruited along with 150 controls. Simple random sampling was done. After taking relevant history and physical examination, we drew venous blood samples of each patient and sent them to the institutional laboratory for analysis of fasting blood sugar (FBS) levels, glycated hemoglobin (HbA1C), lipid profile, and FGF-21 serum levels. Oxidative stress parameter malondialdehyde (MDA) was estimated and the total antioxidant status by ferric reducing antioxidant power assay (FRAP) was assessed. Patients were followed up after three months to record the glycemic index, and the values were recorded. We used SPSS Software 25.0 (SPSS, Inc., Chicago, USA) to analyze the data. For consideration of results to be statistically significant, a 𝑃 value of < 0.05 was selected. Results The levels of serum cholesterol, triglycerides, and low-density lipoprotein (LDL) cholesterol were increased in diabetics compared to controls and were statistically significant (p<0.05). High-density lipoprotein (HDL) cholesterol was lower in diabetic patients as compared to the controls (p<0.05). There was a statistically significant increase in the level of MDA in diabetics compared to controls (p˂0.005). Serum levels of total antioxidant status (FRAP) were decreased in diabetics in comparison with controls (p˂0.005). Serum FGF-21 level was statistically increased in diabetics compared to controls (p˂0.005). FGF-21 and MDA are positively correlated and FGF-21 and FRAP are negatively correlated. Serum FGF-21 is positively correlated with total cholesterol, triglycerides, serum LDL cholesterol, and HDL cholesterol. Conclusion Our study concludes that there is a significant correlation between fibroblast growth factor 21, oxidative stress, and abnormal lipid profile in type 2 diabetic patients. FGF-21 could be the target of certain medications used to treat metabolic disorders and obesity. |
---|