Cargando…
The National COVID Cohort Collaborative: Analyses of Original and Computationally Derived Electronic Health Record Data
BACKGROUND: Computationally derived (“synthetic”) data can enable the creation and analysis of clinical, laboratory, and diagnostic data as if they were the original electronic health record data. Synthetic data can support data sharing to answer critical research questions to address the COVID-19 p...
Autores principales: | Foraker, Randi, Guo, Aixia, Thomas, Jason, Zamstein, Noa, Payne, Philip RO, Wilcox, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491642/ https://www.ncbi.nlm.nih.gov/pubmed/34559671 http://dx.doi.org/10.2196/30697 |
Ejemplares similares
-
Demonstrating an approach for evaluating synthetic geospatial and temporal epidemiologic data utility: Results from analyzing >1.8 million SARS-CoV-2 tests in the United States National COVID Cohort Collaborative (N3C)
por: Thomas, Jason A., et al.
Publicado: (2021) -
Demonstrating an approach for evaluating synthetic geospatial and temporal epidemiologic data utility: results from analyzing >1.8 million SARS-CoV-2 tests in the United States National COVID Cohort Collaborative (N3C)
por: Thomas, Jason A, et al.
Publicado: (2022) -
Community-level determinants of obesity: harnessing the power of electronic health records for retrospective data analysis
por: Roth, Caryn, et al.
Publicado: (2014) -
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning
por: Guo, Aixia, et al.
Publicado: (2021) -
Discovering disease–disease associations using electronic health records in The Guideline Advantage (TGA) dataset
por: Guo, Aixia, et al.
Publicado: (2021)