Cargando…
NEO: NEuro-Inspired Optimization—A Fractional Time Series Approach
Solving optimization problems is a recurrent theme across different fields, including large-scale machine learning systems and deep learning. Often in practical applications, we encounter objective functions where the Hessian is ill-conditioned, which precludes us from using optimization algorithms...
Autores principales: | Chatterjee, Sarthak, Das, Subhro, Pequito, Sérgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491743/ https://www.ncbi.nlm.nih.gov/pubmed/34621183 http://dx.doi.org/10.3389/fphys.2021.724044 |
Ejemplares similares
-
A time-reversed model selection approach to time series forecasting
por: Sibeijn, Max, et al.
Publicado: (2022) -
Editorial: Inference, Causality and Control in Networks of Dynamical Systems: Data Science and Modeling Perspectives to Network Physiology With Implications for Artificial Intelligence
por: Bogdan, Paul, et al.
Publicado: (2022) -
Minimal approach to neuro-inspired information processing
por: Soriano, Miguel C., et al.
Publicado: (2015) -
Editorial: Neurobiology of Drosophila: the 19th NeuroFly-2022 meeting
por: Martin, Jean-René, et al.
Publicado: (2023) -
Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training
por: Brown, Niklas, et al.
Publicado: (2017)