Cargando…

Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, path...

Descripción completa

Detalles Bibliográficos
Autores principales: Gutiérrez, Saray, Fischer, Julia, Ganesan, Raja, Hos, Nina Judith, Cildir, Gökhan, Wolke, Martina, Pessia, Alberto, Frommolt, Peter, Desiderio, Vincenzo, Velagapudi, Vidya, Robinson, Nirmal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491875/
https://www.ncbi.nlm.nih.gov/pubmed/34555129
http://dx.doi.org/10.1371/journal.ppat.1009943
_version_ 1784578816374472704
author Gutiérrez, Saray
Fischer, Julia
Ganesan, Raja
Hos, Nina Judith
Cildir, Gökhan
Wolke, Martina
Pessia, Alberto
Frommolt, Peter
Desiderio, Vincenzo
Velagapudi, Vidya
Robinson, Nirmal
author_facet Gutiérrez, Saray
Fischer, Julia
Ganesan, Raja
Hos, Nina Judith
Cildir, Gökhan
Wolke, Martina
Pessia, Alberto
Frommolt, Peter
Desiderio, Vincenzo
Velagapudi, Vidya
Robinson, Nirmal
author_sort Gutiérrez, Saray
collection PubMed
description Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.
format Online
Article
Text
id pubmed-8491875
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84918752021-10-06 Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense Gutiérrez, Saray Fischer, Julia Ganesan, Raja Hos, Nina Judith Cildir, Gökhan Wolke, Martina Pessia, Alberto Frommolt, Peter Desiderio, Vincenzo Velagapudi, Vidya Robinson, Nirmal PLoS Pathog Research Article Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. Public Library of Science 2021-09-23 /pmc/articles/PMC8491875/ /pubmed/34555129 http://dx.doi.org/10.1371/journal.ppat.1009943 Text en © 2021 Gutiérrez et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Gutiérrez, Saray
Fischer, Julia
Ganesan, Raja
Hos, Nina Judith
Cildir, Gökhan
Wolke, Martina
Pessia, Alberto
Frommolt, Peter
Desiderio, Vincenzo
Velagapudi, Vidya
Robinson, Nirmal
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title_full Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title_fullStr Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title_full_unstemmed Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title_short Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
title_sort salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491875/
https://www.ncbi.nlm.nih.gov/pubmed/34555129
http://dx.doi.org/10.1371/journal.ppat.1009943
work_keys_str_mv AT gutierrezsaray salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT fischerjulia salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT ganesanraja salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT hosninajudith salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT cildirgokhan salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT wolkemartina salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT pessiaalberto salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT frommoltpeter salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT desideriovincenzo salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT velagapudividya salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense
AT robinsonnirmal salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense