Cargando…
Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense
Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, path...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491875/ https://www.ncbi.nlm.nih.gov/pubmed/34555129 http://dx.doi.org/10.1371/journal.ppat.1009943 |
_version_ | 1784578816374472704 |
---|---|
author | Gutiérrez, Saray Fischer, Julia Ganesan, Raja Hos, Nina Judith Cildir, Gökhan Wolke, Martina Pessia, Alberto Frommolt, Peter Desiderio, Vincenzo Velagapudi, Vidya Robinson, Nirmal |
author_facet | Gutiérrez, Saray Fischer, Julia Ganesan, Raja Hos, Nina Judith Cildir, Gökhan Wolke, Martina Pessia, Alberto Frommolt, Peter Desiderio, Vincenzo Velagapudi, Vidya Robinson, Nirmal |
author_sort | Gutiérrez, Saray |
collection | PubMed |
description | Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. |
format | Online Article Text |
id | pubmed-8491875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84918752021-10-06 Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense Gutiérrez, Saray Fischer, Julia Ganesan, Raja Hos, Nina Judith Cildir, Gökhan Wolke, Martina Pessia, Alberto Frommolt, Peter Desiderio, Vincenzo Velagapudi, Vidya Robinson, Nirmal PLoS Pathog Research Article Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. Public Library of Science 2021-09-23 /pmc/articles/PMC8491875/ /pubmed/34555129 http://dx.doi.org/10.1371/journal.ppat.1009943 Text en © 2021 Gutiérrez et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gutiérrez, Saray Fischer, Julia Ganesan, Raja Hos, Nina Judith Cildir, Gökhan Wolke, Martina Pessia, Alberto Frommolt, Peter Desiderio, Vincenzo Velagapudi, Vidya Robinson, Nirmal Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title | Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title_full | Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title_fullStr | Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title_full_unstemmed | Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title_short | Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
title_sort | salmonella typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491875/ https://www.ncbi.nlm.nih.gov/pubmed/34555129 http://dx.doi.org/10.1371/journal.ppat.1009943 |
work_keys_str_mv | AT gutierrezsaray salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT fischerjulia salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT ganesanraja salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT hosninajudith salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT cildirgokhan salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT wolkemartina salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT pessiaalberto salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT frommoltpeter salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT desideriovincenzo salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT velagapudividya salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense AT robinsonnirmal salmonellatyphimuriumimpairsglycolysismediatedacidificationofphagosomestoevademacrophagedefense |