Cargando…
FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model
BACKGROUND: The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492284/ https://www.ncbi.nlm.nih.gov/pubmed/34621323 http://dx.doi.org/10.1155/2021/5582567 |
_version_ | 1784578892564004864 |
---|---|
author | Wang, Lexun Wu, Huijuan Deng, Yanyue Zhang, Shengxi Wei, Quxing Yang, Qianqian Piao, Shenghua Bei, Weijian Rong, Xianglu Guo, Jiao |
author_facet | Wang, Lexun Wu, Huijuan Deng, Yanyue Zhang, Shengxi Wei, Quxing Yang, Qianqian Piao, Shenghua Bei, Weijian Rong, Xianglu Guo, Jiao |
author_sort | Wang, Lexun |
collection | PubMed |
description | BACKGROUND: The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to treat dyslipidemia and diabetes. Recently, several studies have reported the therapeutic effects of FTZ on cardiovascular diseases. However, the effects of FTZ on DCM have not yet been fully elucidated. This study investigated the effects of FTZ on DCM and determined the mechanisms underlying its efficacy. METHODS: Diabetes was induced in mice by intraperitoneal injection of streptozotocin; the mice were randomly divided into a control group (Con), diabetes group (DCM), and diabetes-treated with FTZ (DCM + FTZ). Myocardial structural alterations, fibrosis biomarkers, and inflammation were observed. Besides, the potential targets and their related signaling pathways were analyzed using network pharmacology and further verified by Western blot. RESULTS: Diabetic mice showed significant body weight loss, hyperglycemia, and excessive collagen content in the cardiac tissue, while serum and myocardial inflammatory factors significantly increased. Nerveless, treatment with FTZ for 1 month significantly improved body weight, attenuated hyperglycemia, and alleviated diabetes-associated myocardial structure and function abnormalities. Furthermore, the serum levels of interleukin 12 (IL-12) and chemokine (C–C motif) ligand 2 (CCL2) as well as the mRNA levels of cardiac IL-12, IL-6, and C–C motif chemokine receptor 2 (Ccr2) reduced after FTZ treatment. Additionally, a total of 67 active compounds and 76 potential targets related to DCM were analyzed. Pathway and functional enrichment analyses showed that FTZ mainly regulates inflammation-related pathways, including MAPK and PI3K-AKT signaling pathways. Further investigation revealed that the activities of STAT3, AKT, and ERK were augmented in diabetic hearts but decreased in FTZ-treated cardiac tissues. CONCLUSION: Our results suggest that FTZ exhibits therapeutic properties against DCM by ameliorating hyperglycemia-induced inflammation and fibrosis via at least partial inhibition of AKT, ERK, and STAT3 signaling pathways. |
format | Online Article Text |
id | pubmed-8492284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-84922842021-10-06 FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model Wang, Lexun Wu, Huijuan Deng, Yanyue Zhang, Shengxi Wei, Quxing Yang, Qianqian Piao, Shenghua Bei, Weijian Rong, Xianglu Guo, Jiao Evid Based Complement Alternat Med Research Article BACKGROUND: The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to treat dyslipidemia and diabetes. Recently, several studies have reported the therapeutic effects of FTZ on cardiovascular diseases. However, the effects of FTZ on DCM have not yet been fully elucidated. This study investigated the effects of FTZ on DCM and determined the mechanisms underlying its efficacy. METHODS: Diabetes was induced in mice by intraperitoneal injection of streptozotocin; the mice were randomly divided into a control group (Con), diabetes group (DCM), and diabetes-treated with FTZ (DCM + FTZ). Myocardial structural alterations, fibrosis biomarkers, and inflammation were observed. Besides, the potential targets and their related signaling pathways were analyzed using network pharmacology and further verified by Western blot. RESULTS: Diabetic mice showed significant body weight loss, hyperglycemia, and excessive collagen content in the cardiac tissue, while serum and myocardial inflammatory factors significantly increased. Nerveless, treatment with FTZ for 1 month significantly improved body weight, attenuated hyperglycemia, and alleviated diabetes-associated myocardial structure and function abnormalities. Furthermore, the serum levels of interleukin 12 (IL-12) and chemokine (C–C motif) ligand 2 (CCL2) as well as the mRNA levels of cardiac IL-12, IL-6, and C–C motif chemokine receptor 2 (Ccr2) reduced after FTZ treatment. Additionally, a total of 67 active compounds and 76 potential targets related to DCM were analyzed. Pathway and functional enrichment analyses showed that FTZ mainly regulates inflammation-related pathways, including MAPK and PI3K-AKT signaling pathways. Further investigation revealed that the activities of STAT3, AKT, and ERK were augmented in diabetic hearts but decreased in FTZ-treated cardiac tissues. CONCLUSION: Our results suggest that FTZ exhibits therapeutic properties against DCM by ameliorating hyperglycemia-induced inflammation and fibrosis via at least partial inhibition of AKT, ERK, and STAT3 signaling pathways. Hindawi 2021-09-28 /pmc/articles/PMC8492284/ /pubmed/34621323 http://dx.doi.org/10.1155/2021/5582567 Text en Copyright © 2021 Lexun Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Lexun Wu, Huijuan Deng, Yanyue Zhang, Shengxi Wei, Quxing Yang, Qianqian Piao, Shenghua Bei, Weijian Rong, Xianglu Guo, Jiao FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title | FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title_full | FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title_fullStr | FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title_full_unstemmed | FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title_short | FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model |
title_sort | ftz ameliorates diabetic cardiomyopathy by inhibiting inflammation and cardiac fibrosis in the streptozotocin-induced model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492284/ https://www.ncbi.nlm.nih.gov/pubmed/34621323 http://dx.doi.org/10.1155/2021/5582567 |
work_keys_str_mv | AT wanglexun ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT wuhuijuan ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT dengyanyue ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT zhangshengxi ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT weiquxing ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT yangqianqian ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT piaoshenghua ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT beiweijian ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT rongxianglu ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel AT guojiao ftzamelioratesdiabeticcardiomyopathybyinhibitinginflammationandcardiacfibrosisinthestreptozotocininducedmodel |