Cargando…
A Novel Medical Image Denoising Method Based on Conditional Generative Adversarial Network
Medical image quality is highly relative to clinical diagnosis and treatment, leading to a popular research topic of medical image denoising. Image denoising based on deep learning methods has attracted considerable attention owing to its excellent ability of automatic feature extraction. Most exist...
Autores principales: | Li, Yuqin, Zhang, Ke, Shi, Weili, Miao, Yu, Jiang, Zhengang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492295/ https://www.ncbi.nlm.nih.gov/pubmed/34621329 http://dx.doi.org/10.1155/2021/9974017 |
Ejemplares similares
-
An Effective Image Denoising Method for UAV Images via Improved Generative Adversarial Networks
por: Wang, Ruihua, et al.
Publicado: (2018) -
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses
por: Cho, Sung In, et al.
Publicado: (2021) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023)