Cargando…

Diffusion adaptive filtering algorithm based on the Fair cost function

To better perform distributed estimation, this paper, by combining the Fair cost function and adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) adaptive f...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Sihai, Cheng, Qing, Zhao, Yong, Biswal, Bharat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492734/
https://www.ncbi.nlm.nih.gov/pubmed/34611242
http://dx.doi.org/10.1038/s41598-021-99330-9
Descripción
Sumario:To better perform distributed estimation, this paper, by combining the Fair cost function and adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) adaptive filtering algorithm. The stability of the mean estimation error and the computational complexity of the DFair are theoretically analyzed. Compared with the robust diffusion LMS (RDLMS), diffusion Normalized Least Mean M-estimate (DNLMM), diffusion generalized correntropy logarithmic difference (DGCLD), and diffusion probabilistic least mean square (DPLMS) algorithms, the simulation experiment results show that the DFair algorithm is more robust to input signals and impulsive interference. In conclusion, Theoretical analysis and simulation results show that the DFair algorithm performs better when estimating an unknown linear system in the changeable impulsive interference environments.