Cargando…
An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens
Fungal plant-pathogens promote infection of their hosts through the release of ‘effectors’—a broad class of cytotoxic or virulence-promoting molecules. Effectors may be recognised by resistance or sensitivity receptors in the host, which can determine disease outcomes. Accurate prediction of effecto...
Autores principales: | Jones, Darcy A. B., Rozano, Lina, Debler, Johannes W., Mancera, Ricardo L., Moolhuijzen, Paula M., Hane, James K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492765/ https://www.ncbi.nlm.nih.gov/pubmed/34611252 http://dx.doi.org/10.1038/s41598-021-99363-0 |
Ejemplares similares
-
Publisher Correction: An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens
por: Jones, Darcy A. B., et al.
Publicado: (2021) -
The Molecular Docking of MAX Fungal Effectors with Plant HMA Domain-Binding Proteins
por: Rozano, Lina, et al.
Publicado: (2023) -
Ab Initio Modelling of the Structure of ToxA-like and MAX Fungal Effector Proteins
por: Rozano, Lina, et al.
Publicado: (2023) -
Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi
por: Jones, Darcy A. B., et al.
Publicado: (2021) -
Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts
por: Debler, Johannes W., et al.
Publicado: (2021)