Cargando…
A transfer learning framework based on motor imagery rehabilitation for stroke
Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effective mot...
Autores principales: | Xu, Fangzhou, Miao, Yunjing, Sun, Yanan, Guo, Dongju, Xu, Jiali, Wang, Yuandong, Li, Jincheng, Li, Han, Dong, Gege, Rong, Fenqi, Leng, Jiancai, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492790/ https://www.ncbi.nlm.nih.gov/pubmed/34611209 http://dx.doi.org/10.1038/s41598-021-99114-1 |
Ejemplares similares
-
Coherence based graph convolution network for motor imagery-induced EEG after spinal cord injury
por: Li, Han, et al.
Publicado: (2023) -
Time-Varying Effective Connectivity for Describing the Dynamic Brain Networks of Post-stroke Rehabilitation
por: Xu, Fangzhou, et al.
Publicado: (2022) -
Virtual reality and motor imagery for early post-stroke rehabilitation
por: Choy, Chi S., et al.
Publicado: (2023) -
Efficacy of motor imagery in post-stroke rehabilitation: a systematic review
por: Zimmermann-Schlatter, Andrea, et al.
Publicado: (2008) -
Motor imagery and action observation: cognitive tools for rehabilitation
por: Mulder, Th.
Publicado: (2007)