Cargando…
EEG-based human emotion recognition using entropy as a feature extraction measure
Many studies on brain–computer interface (BCI) have sought to understand the emotional state of the user to provide a reliable link between humans and machines. Advanced neuroimaging methods like electroencephalography (EEG) have enabled us to replicate and understand a wide range of human emotions...
Autores principales: | Patel, Pragati, R , Raghunandan, Annavarapu, Ramesh Naidu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492873/ https://www.ncbi.nlm.nih.gov/pubmed/34609639 http://dx.doi.org/10.1186/s40708-021-00141-5 |
Ejemplares similares
-
Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG
por: Xie, Zun, et al.
Publicado: (2022) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022) -
Feature extraction based on microstate sequences for EEG–based emotion recognition
por: Chen, Jing, et al.
Publicado: (2022) -
EEG-Based Emotion Recognition by Exploiting Fused Network Entropy Measures of Complex Networks across Subjects
por: Yao, Longxin, et al.
Publicado: (2021)