Cargando…
Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies
Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower e...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492926/ https://www.ncbi.nlm.nih.gov/pubmed/34630477 http://dx.doi.org/10.3389/fpls.2021.730270 |
_version_ | 1784579017514418176 |
---|---|
author | Moschin, Silvia Nigris, Sebastiano Ezquer, Ignacio Masiero, Simona Cagnin, Stefano Cortese, Enrico Colombo, Lucia Casadoro, Giorgio Baldan, Barbara |
author_facet | Moschin, Silvia Nigris, Sebastiano Ezquer, Ignacio Masiero, Simona Cagnin, Stefano Cortese, Enrico Colombo, Lucia Casadoro, Giorgio Baldan, Barbara |
author_sort | Moschin, Silvia |
collection | PubMed |
description | Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers. |
format | Online Article Text |
id | pubmed-8492926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84929262021-10-07 Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies Moschin, Silvia Nigris, Sebastiano Ezquer, Ignacio Masiero, Simona Cagnin, Stefano Cortese, Enrico Colombo, Lucia Casadoro, Giorgio Baldan, Barbara Front Plant Sci Plant Science Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers. Frontiers Media S.A. 2021-09-22 /pmc/articles/PMC8492926/ /pubmed/34630477 http://dx.doi.org/10.3389/fpls.2021.730270 Text en Copyright © 2021 Moschin, Nigris, Ezquer, Masiero, Cagnin, Cortese, Colombo, Casadoro and Baldan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Moschin, Silvia Nigris, Sebastiano Ezquer, Ignacio Masiero, Simona Cagnin, Stefano Cortese, Enrico Colombo, Lucia Casadoro, Giorgio Baldan, Barbara Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title | Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title_full | Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title_fullStr | Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title_full_unstemmed | Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title_short | Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies |
title_sort | expression and functional analyses of nymphaea caerulea mads-box genes contribute to clarify the complex flower patterning of water lilies |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492926/ https://www.ncbi.nlm.nih.gov/pubmed/34630477 http://dx.doi.org/10.3389/fpls.2021.730270 |
work_keys_str_mv | AT moschinsilvia expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT nigrissebastiano expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT ezquerignacio expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT masierosimona expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT cagninstefano expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT corteseenrico expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT colombolucia expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT casadorogiorgio expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies AT baldanbarbara expressionandfunctionalanalysesofnymphaeacaeruleamadsboxgenescontributetoclarifythecomplexflowerpatterningofwaterlilies |