Cargando…
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
The study of protein–protein interaction and the determination of protein functions are important parts of proteomics. Computational methods are used to study the similarity between proteins based on Gene Ontology (GO) to explore their functions and possible interactions. GO is a series of standardi...
Autores principales: | Zhang, Yuanyuan, Wang, Ziqi, Wang, Shudong, Shang, Junliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493040/ https://www.ncbi.nlm.nih.gov/pubmed/34630534 http://dx.doi.org/10.3389/fgene.2021.744334 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
An Efficient Computational Model for Large-Scale Prediction of Protein–Protein Interactions Based on Accurate and Scalable Graph Embedding
por: Su, Xiao-Rui, et al.
Publicado: (2021) -
The Unsupervised Feature Selection Algorithms Based on Standard Deviation and Cosine Similarity for Genomic Data Analysis
por: Xie, Juanying, et al.
Publicado: (2021) -
Editorial: Graph Embedding Methods for Multiple-Omics Data Analysis
por: Lan, Wei, et al.
Publicado: (2021)