Cargando…

Combining epidemiological and ecological methods to quantify social effects on Escherichia coli transmission

Enteric microparasites like Escherichia coli use multiple transmission pathways to propagate within and between host populations. Characterizing the relative transmission risk attributable to host social relationships and direct physical contact between individuals is paramount for understanding how...

Descripción completa

Detalles Bibliográficos
Autores principales: Farthing, Trevor S., Dawson, Daniel E., Sanderson, Mike W., Seger, Hannah, Lanzas, Cristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493196/
https://www.ncbi.nlm.nih.gov/pubmed/34754493
http://dx.doi.org/10.1098/rsos.210328
Descripción
Sumario:Enteric microparasites like Escherichia coli use multiple transmission pathways to propagate within and between host populations. Characterizing the relative transmission risk attributable to host social relationships and direct physical contact between individuals is paramount for understanding how microparasites like E. coli spread within affected communities and estimating colonization rates. To measure these effects, we carried out commensal E. coli transmission experiments in two cattle (Bos taurus) herds, wherein all individuals were equipped with real-time location tracking devices. Following transmission experiments in this model system, we derived temporally dynamic social and contact networks from location data. Estimated social affiliations and dyadic contact frequencies during transmission experiments informed pairwise accelerated failure time models that we used to quantify effects of these sociobehavioural variables on weekly E. coli colonization risk in these populations. We found that sociobehavioural variables alone were ultimately poor predictors of E. coli colonization in feedlot cattle, but can have significant effects on colonization hazard rates (p ≤ 0.05). We show, however, that observed effects were not consistent between similar populations. This work demonstrates that transmission experiments can be combined with real-time location data collection and processing procedures to create an effective framework for quantifying sociobehavioural effects on microparasite transmission.