Cargando…
SpikePropamine: Differentiable Plasticity in Spiking Neural Networks
The adaptive changes in synaptic efficacy that occur between spiking neurons have been demonstrated to play a critical role in learning for biological neural networks. Despite this source of inspiration, many learning focused applications using Spiking Neural Networks (SNNs) retain static synaptic c...
Autores principales: | Schmidgall, Samuel, Ashkanazy, Julia, Lawson, Wallace, Hays, Joe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493296/ https://www.ncbi.nlm.nih.gov/pubmed/34630063 http://dx.doi.org/10.3389/fnbot.2021.629210 |
Ejemplares similares
-
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023) -
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Liu, Fangxin, et al.
Publicado: (2021) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022)