Cargando…
A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study
BACKGROUND: Recently, the analysis of endolymphatic hydropses (EHs) via inner ear magnetic resonance imaging (MRI) for patients with Ménière disease has been attempted in various studies. In addition, artificial intelligence has rapidly been incorporated into the medical field. In our previous studi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493456/ https://www.ncbi.nlm.nih.gov/pubmed/34546181 http://dx.doi.org/10.2196/29678 |
_version_ | 1784579116595412992 |
---|---|
author | Park, Chae Jung Cho, Young Sang Chung, Myung Jin Kim, Yi-Kyung Kim, Hyung-Jin Kim, Kyunga Ko, Jae-Wook Chung, Won-Ho Cho, Baek Hwan |
author_facet | Park, Chae Jung Cho, Young Sang Chung, Myung Jin Kim, Yi-Kyung Kim, Hyung-Jin Kim, Kyunga Ko, Jae-Wook Chung, Won-Ho Cho, Baek Hwan |
author_sort | Park, Chae Jung |
collection | PubMed |
description | BACKGROUND: Recently, the analysis of endolymphatic hydropses (EHs) via inner ear magnetic resonance imaging (MRI) for patients with Ménière disease has been attempted in various studies. In addition, artificial intelligence has rapidly been incorporated into the medical field. In our previous studies, an automated algorithm for EH analysis was developed by using a convolutional neural network. However, several limitations existed, and further studies were conducted to compensate for these limitations. OBJECTIVE: The aim of this study is to develop a fully automated analytic system for measuring EH ratios that enhances EH analysis accuracy and clinical usability when studying Ménière disease via MRI. METHODS: We proposed the 3into3Inception and 3intoUNet networks. Their network architectures were based on those of the Inception-v3 and U-Net networks, respectively. The developed networks were trained for inner ear segmentation by using the magnetic resonance images of 124 people and were embedded in a new, automated EH analysis system—inner-ear hydrops estimation via artificial intelligence (INHEARIT)-version 2 (INHEARIT-v2). After fivefold cross-validation, an additional test was performed by using 60 new, unseen magnetic resonance images to evaluate the performance of our system. The INHEARIT-v2 system has a new function that automatically selects representative images from a full MRI stack. RESULTS: The average segmentation performance of the fivefold cross-validation was measured via the intersection of union method, resulting in performance values of 0.743 (SD 0.030) for the 3into3Inception network and 0.811 (SD 0.032) for the 3intoUNet network. The representative magnetic resonance slices (ie, from a data set of unseen magnetic resonance images) that were automatically selected by the INHEARIT-v2 system only differed from a maximum of 2 expert-selected slices. After comparing the ratios calculated by experienced physicians and those calculated by the INHEARIT-v2 system, we found that the average intraclass correlation coefficient for all cases was 0.941; the average intraclass correlation coefficient of the vestibules was 0.968, and that of the cochleae was 0.914. The time required for the fully automated system to accurately analyze EH ratios based on a patient's MRI stack was approximately 3.5 seconds. CONCLUSIONS: In this study, a fully automated full-stack magnetic resonance analysis system for measuring EH ratios was developed (named INHEARIT-v2), and the results showed that there was a high correlation between the expert-calculated EH ratio values and those calculated by the INHEARIT-v2 system. The system is an upgraded version of the INHEARIT system; it has higher segmentation performance and automatically selects representative images from an MRI stack. The new model can help clinicians by providing objective analysis results and reducing the workload for interpreting magnetic resonance images. |
format | Online Article Text |
id | pubmed-8493456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-84934562021-12-07 A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study Park, Chae Jung Cho, Young Sang Chung, Myung Jin Kim, Yi-Kyung Kim, Hyung-Jin Kim, Kyunga Ko, Jae-Wook Chung, Won-Ho Cho, Baek Hwan J Med Internet Res Original Paper BACKGROUND: Recently, the analysis of endolymphatic hydropses (EHs) via inner ear magnetic resonance imaging (MRI) for patients with Ménière disease has been attempted in various studies. In addition, artificial intelligence has rapidly been incorporated into the medical field. In our previous studies, an automated algorithm for EH analysis was developed by using a convolutional neural network. However, several limitations existed, and further studies were conducted to compensate for these limitations. OBJECTIVE: The aim of this study is to develop a fully automated analytic system for measuring EH ratios that enhances EH analysis accuracy and clinical usability when studying Ménière disease via MRI. METHODS: We proposed the 3into3Inception and 3intoUNet networks. Their network architectures were based on those of the Inception-v3 and U-Net networks, respectively. The developed networks were trained for inner ear segmentation by using the magnetic resonance images of 124 people and were embedded in a new, automated EH analysis system—inner-ear hydrops estimation via artificial intelligence (INHEARIT)-version 2 (INHEARIT-v2). After fivefold cross-validation, an additional test was performed by using 60 new, unseen magnetic resonance images to evaluate the performance of our system. The INHEARIT-v2 system has a new function that automatically selects representative images from a full MRI stack. RESULTS: The average segmentation performance of the fivefold cross-validation was measured via the intersection of union method, resulting in performance values of 0.743 (SD 0.030) for the 3into3Inception network and 0.811 (SD 0.032) for the 3intoUNet network. The representative magnetic resonance slices (ie, from a data set of unseen magnetic resonance images) that were automatically selected by the INHEARIT-v2 system only differed from a maximum of 2 expert-selected slices. After comparing the ratios calculated by experienced physicians and those calculated by the INHEARIT-v2 system, we found that the average intraclass correlation coefficient for all cases was 0.941; the average intraclass correlation coefficient of the vestibules was 0.968, and that of the cochleae was 0.914. The time required for the fully automated system to accurately analyze EH ratios based on a patient's MRI stack was approximately 3.5 seconds. CONCLUSIONS: In this study, a fully automated full-stack magnetic resonance analysis system for measuring EH ratios was developed (named INHEARIT-v2), and the results showed that there was a high correlation between the expert-calculated EH ratio values and those calculated by the INHEARIT-v2 system. The system is an upgraded version of the INHEARIT system; it has higher segmentation performance and automatically selects representative images from an MRI stack. The new model can help clinicians by providing objective analysis results and reducing the workload for interpreting magnetic resonance images. JMIR Publications 2021-09-21 /pmc/articles/PMC8493456/ /pubmed/34546181 http://dx.doi.org/10.2196/29678 Text en ©Chae Jung Park, Young Sang Cho, Myung Jin Chung, Yi-Kyung Kim, Hyung-Jin Kim, Kyunga Kim, Jae-Wook Ko, Won-Ho Chung, Baek Hwan Cho. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 21.09.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Park, Chae Jung Cho, Young Sang Chung, Myung Jin Kim, Yi-Kyung Kim, Hyung-Jin Kim, Kyunga Ko, Jae-Wook Chung, Won-Ho Cho, Baek Hwan A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title | A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title_full | A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title_fullStr | A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title_full_unstemmed | A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title_short | A Fully Automated Analytic System for Measuring Endolymphatic Hydrops Ratios in Patients With Ménière Disease via Magnetic Resonance Imaging: Deep Learning Model Development Study |
title_sort | fully automated analytic system for measuring endolymphatic hydrops ratios in patients with ménière disease via magnetic resonance imaging: deep learning model development study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493456/ https://www.ncbi.nlm.nih.gov/pubmed/34546181 http://dx.doi.org/10.2196/29678 |
work_keys_str_mv | AT parkchaejung afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT choyoungsang afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chungmyungjin afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimyikyung afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimhyungjin afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimkyunga afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kojaewook afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chungwonho afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chobaekhwan afullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT parkchaejung fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT choyoungsang fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chungmyungjin fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimyikyung fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimhyungjin fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kimkyunga fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT kojaewook fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chungwonho fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy AT chobaekhwan fullyautomatedanalyticsystemformeasuringendolymphatichydropsratiosinpatientswithmenierediseaseviamagneticresonanceimagingdeeplearningmodeldevelopmentstudy |