Cargando…
Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account
Mortality and mortality rate have become the major issues in insurance industries, for instance, life insurance and pension fund. Such industries will, in particular, be concerned with the quantification of risk attached, say longevity risk, to insurance products that may receive severe impacts from...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493585/ https://www.ncbi.nlm.nih.gov/pubmed/34632127 http://dx.doi.org/10.1016/j.heliyon.2021.e08083 |
_version_ | 1784579149241778176 |
---|---|
author | Syuhada, Khreshna Hakim, Arief |
author_facet | Syuhada, Khreshna Hakim, Arief |
author_sort | Syuhada, Khreshna |
collection | PubMed |
description | Mortality and mortality rate have become the major issues in insurance industries, for instance, life insurance and pension fund. Such industries will, in particular, be concerned with the quantification of risk attached, say longevity risk, to insurance products that may receive severe impacts from the fall of mortality rate. In this paper, we model the mortality rate by using an Autoregressive (AR) model with a conditional heteroscedasticity effect. This effect is accommodated by a stochastic model of Autoregressive Conditional Heteroscedastic (ARCH) as well as a Stochastic Volatility Autoregressive (SVAR) model. Furthermore, we do forecasting of what so-called Mortality-at-Risk (MaR) by adopting the Value-at-Risk framework and its improvement. The calculation of the MaR forecast for those two models is conducted with significantly different approaches. |
format | Online Article Text |
id | pubmed-8493585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84935852021-10-08 Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account Syuhada, Khreshna Hakim, Arief Heliyon Research Article Mortality and mortality rate have become the major issues in insurance industries, for instance, life insurance and pension fund. Such industries will, in particular, be concerned with the quantification of risk attached, say longevity risk, to insurance products that may receive severe impacts from the fall of mortality rate. In this paper, we model the mortality rate by using an Autoregressive (AR) model with a conditional heteroscedasticity effect. This effect is accommodated by a stochastic model of Autoregressive Conditional Heteroscedastic (ARCH) as well as a Stochastic Volatility Autoregressive (SVAR) model. Furthermore, we do forecasting of what so-called Mortality-at-Risk (MaR) by adopting the Value-at-Risk framework and its improvement. The calculation of the MaR forecast for those two models is conducted with significantly different approaches. Elsevier 2021-09-30 /pmc/articles/PMC8493585/ /pubmed/34632127 http://dx.doi.org/10.1016/j.heliyon.2021.e08083 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Syuhada, Khreshna Hakim, Arief Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title | Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title_full | Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title_fullStr | Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title_full_unstemmed | Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title_short | Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account |
title_sort | stochastic modeling of mortality rates and mortality-at-risk forecast by taking conditional heteroscedasticity effect into account |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493585/ https://www.ncbi.nlm.nih.gov/pubmed/34632127 http://dx.doi.org/10.1016/j.heliyon.2021.e08083 |
work_keys_str_mv | AT syuhadakhreshna stochasticmodelingofmortalityratesandmortalityatriskforecastbytakingconditionalheteroscedasticityeffectintoaccount AT hakimarief stochasticmodelingofmortalityratesandmortalityatriskforecastbytakingconditionalheteroscedasticityeffectintoaccount |