Cargando…
Stochastic modeling of mortality rates and Mortality-at-Risk forecast by taking conditional heteroscedasticity effect into account
Mortality and mortality rate have become the major issues in insurance industries, for instance, life insurance and pension fund. Such industries will, in particular, be concerned with the quantification of risk attached, say longevity risk, to insurance products that may receive severe impacts from...
Autores principales: | Syuhada, Khreshna, Hakim, Arief |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493585/ https://www.ncbi.nlm.nih.gov/pubmed/34632127 http://dx.doi.org/10.1016/j.heliyon.2021.e08083 |
Ejemplares similares
-
Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies
por: Syuhada, Khreshna, et al.
Publicado: (2020) -
Covid-19 risk data during lockdown-like policy in Indonesia
por: Syuhada, Khreshna, et al.
Publicado: (2021) -
Comparing gold’s and Bitcoin’s safe-haven roles against energy commodities during the COVID-19 outbreak: A vine copula approach
por: Syuhada, Khreshna, et al.
Publicado: (2022) -
Dependent conditional value-at-risk for aggregate risk models
por: Josaphat, Bony Parulian, et al.
Publicado: (2021) -
Modifying (M)CoVaR and constructing tail risk networks through analytic higher-order moments: Evidence from the global forex markets
por: Hakim, Arief, et al.
Publicado: (2022)