Cargando…

Data reduction for serial crystallography using a robust peak finder

A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of ‘robust statistics’ has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtur...

Descripción completa

Detalles Bibliográficos
Autores principales: Hadian-Jazi, Marjan, Sadri, Alireza, Barty, Anton, Yefanov, Oleksandr, Galchenkova, Marina, Oberthuer, Dominik, Komadina, Dana, Brehm, Wolfgang, Kirkwood, Henry, Mills, Grant, de Wijn, Raphael, Letrun, Romain, Kloos, Marco, Vakili, Mohammad, Gelisio, Luca, Darmanin, Connie, Mancuso, Adrian P., Chapman, Henry N., Abbey, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493619/
https://www.ncbi.nlm.nih.gov/pubmed/34667447
http://dx.doi.org/10.1107/S1600576721007317
_version_ 1784579154947080192
author Hadian-Jazi, Marjan
Sadri, Alireza
Barty, Anton
Yefanov, Oleksandr
Galchenkova, Marina
Oberthuer, Dominik
Komadina, Dana
Brehm, Wolfgang
Kirkwood, Henry
Mills, Grant
de Wijn, Raphael
Letrun, Romain
Kloos, Marco
Vakili, Mohammad
Gelisio, Luca
Darmanin, Connie
Mancuso, Adrian P.
Chapman, Henry N.
Abbey, Brian
author_facet Hadian-Jazi, Marjan
Sadri, Alireza
Barty, Anton
Yefanov, Oleksandr
Galchenkova, Marina
Oberthuer, Dominik
Komadina, Dana
Brehm, Wolfgang
Kirkwood, Henry
Mills, Grant
de Wijn, Raphael
Letrun, Romain
Kloos, Marco
Vakili, Mohammad
Gelisio, Luca
Darmanin, Connie
Mancuso, Adrian P.
Chapman, Henry N.
Abbey, Brian
author_sort Hadian-Jazi, Marjan
collection PubMed
description A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of ‘robust statistics’ has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers (i.e. the background noise) and another group comprising outliers (i.e. Bragg peaks). Our robust statistics algorithm has two key advantages, which are demonstrated through testing using multiple SX data sets. First, it is relatively insensitive to the exact value of the input parameters and hence requires minimal optimization. This is critical for the algorithm to be able to run unsupervised, allowing for automated selection or ‘vetoing’ of SX diffraction data. Secondly, the processing of individual diffraction patterns can be easily parallelized. This means that it can analyse data from multiple detector modules simultaneously, making it ideally suited to real-time data processing. These characteristics mean that the robust peak finder (RPF) algorithm will be particularly beneficial for the new class of MHz X-ray free-electron laser sources, which generate large amounts of data in a short period of time.
format Online
Article
Text
id pubmed-8493619
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-84936192021-10-18 Data reduction for serial crystallography using a robust peak finder Hadian-Jazi, Marjan Sadri, Alireza Barty, Anton Yefanov, Oleksandr Galchenkova, Marina Oberthuer, Dominik Komadina, Dana Brehm, Wolfgang Kirkwood, Henry Mills, Grant de Wijn, Raphael Letrun, Romain Kloos, Marco Vakili, Mohammad Gelisio, Luca Darmanin, Connie Mancuso, Adrian P. Chapman, Henry N. Abbey, Brian J Appl Crystallogr Research Papers A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of ‘robust statistics’ has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers (i.e. the background noise) and another group comprising outliers (i.e. Bragg peaks). Our robust statistics algorithm has two key advantages, which are demonstrated through testing using multiple SX data sets. First, it is relatively insensitive to the exact value of the input parameters and hence requires minimal optimization. This is critical for the algorithm to be able to run unsupervised, allowing for automated selection or ‘vetoing’ of SX diffraction data. Secondly, the processing of individual diffraction patterns can be easily parallelized. This means that it can analyse data from multiple detector modules simultaneously, making it ideally suited to real-time data processing. These characteristics mean that the robust peak finder (RPF) algorithm will be particularly beneficial for the new class of MHz X-ray free-electron laser sources, which generate large amounts of data in a short period of time. International Union of Crystallography 2021-09-13 /pmc/articles/PMC8493619/ /pubmed/34667447 http://dx.doi.org/10.1107/S1600576721007317 Text en © Marjan Hadian-Jazi et al. 2021 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Hadian-Jazi, Marjan
Sadri, Alireza
Barty, Anton
Yefanov, Oleksandr
Galchenkova, Marina
Oberthuer, Dominik
Komadina, Dana
Brehm, Wolfgang
Kirkwood, Henry
Mills, Grant
de Wijn, Raphael
Letrun, Romain
Kloos, Marco
Vakili, Mohammad
Gelisio, Luca
Darmanin, Connie
Mancuso, Adrian P.
Chapman, Henry N.
Abbey, Brian
Data reduction for serial crystallography using a robust peak finder
title Data reduction for serial crystallography using a robust peak finder
title_full Data reduction for serial crystallography using a robust peak finder
title_fullStr Data reduction for serial crystallography using a robust peak finder
title_full_unstemmed Data reduction for serial crystallography using a robust peak finder
title_short Data reduction for serial crystallography using a robust peak finder
title_sort data reduction for serial crystallography using a robust peak finder
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493619/
https://www.ncbi.nlm.nih.gov/pubmed/34667447
http://dx.doi.org/10.1107/S1600576721007317
work_keys_str_mv AT hadianjazimarjan datareductionforserialcrystallographyusingarobustpeakfinder
AT sadrialireza datareductionforserialcrystallographyusingarobustpeakfinder
AT bartyanton datareductionforserialcrystallographyusingarobustpeakfinder
AT yefanovoleksandr datareductionforserialcrystallographyusingarobustpeakfinder
AT galchenkovamarina datareductionforserialcrystallographyusingarobustpeakfinder
AT oberthuerdominik datareductionforserialcrystallographyusingarobustpeakfinder
AT komadinadana datareductionforserialcrystallographyusingarobustpeakfinder
AT brehmwolfgang datareductionforserialcrystallographyusingarobustpeakfinder
AT kirkwoodhenry datareductionforserialcrystallographyusingarobustpeakfinder
AT millsgrant datareductionforserialcrystallographyusingarobustpeakfinder
AT dewijnraphael datareductionforserialcrystallographyusingarobustpeakfinder
AT letrunromain datareductionforserialcrystallographyusingarobustpeakfinder
AT kloosmarco datareductionforserialcrystallographyusingarobustpeakfinder
AT vakilimohammad datareductionforserialcrystallographyusingarobustpeakfinder
AT gelisioluca datareductionforserialcrystallographyusingarobustpeakfinder
AT darmaninconnie datareductionforserialcrystallographyusingarobustpeakfinder
AT mancusoadrianp datareductionforserialcrystallographyusingarobustpeakfinder
AT chapmanhenryn datareductionforserialcrystallographyusingarobustpeakfinder
AT abbeybrian datareductionforserialcrystallographyusingarobustpeakfinder