Cargando…
Co-clustering of Time-Dependent Data via the Shape Invariant Model
Multivariate time-dependent data, where multiple features are observed over time for a set of individuals, are increasingly widespread in many application domains. To model these data, we need to account for relations among both time instants and variables and, at the same time, for subject heteroge...
Autores principales: | Casa, Alessandro, Bouveyron, Charles, Erosheva, Elena, Menardi, Giovanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494170/ https://www.ncbi.nlm.nih.gov/pubmed/34642517 http://dx.doi.org/10.1007/s00357-021-09402-8 |
Ejemplares similares
-
Modal clustering of matrix-variate data
por: Ferraccioli, Federico, et al.
Publicado: (2022) -
Shaping caustics into propagation-invariant light
por: Zannotti, Alessandro, et al.
Publicado: (2020) -
kmlShape: An Efficient Method to Cluster Longitudinal Data (Time-Series) According to Their Shapes
por: Genolini, Christophe, et al.
Publicado: (2016) -
An invariant approach to statistical analysis of shapes
por: Lele, Subhash R, et al.
Publicado: (2001) -
Dynamical invariant for forced time-dependent harmonic oscillator
por: Takayama, K
Publicado: (1981)