Cargando…
A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
Recent developments of single-cell RNA-seq (scRNA-seq) technologies have led to enormous biological discoveries. As the scale of scRNA-seq studies increases, a major challenge in analysis is batch effects, which are inevitable in studies involving human tissues. Most existing methods remove batch ef...
Autores principales: | Lakkis, Justin, Wang, David, Zhang, Yuanchao, Hu, Gang, Wang, Kui, Pan, Huize, Ungar, Lyle, Reilly, Muredach P., Li, Xiangjie, Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494213/ https://www.ncbi.nlm.nih.gov/pubmed/34035047 http://dx.doi.org/10.1101/gr.271874.120 |
Ejemplares similares
-
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Li, Xiangjie, et al.
Publicado: (2020) -
mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
por: Zeng, Yanyan, et al.
Publicado: (2022) -
PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution
por: Hu, Yu, et al.
Publicado: (2014) -
Long-read amplicon denoising
por: Kumar, Venkatesh, et al.
Publicado: (2019) -
Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function
por: Koussis, Konstantinos, et al.
Publicado: (2020)