Cargando…
A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
Single-cell genomics is rapidly advancing our knowledge of the diversity of cell phenotypes, including both cell types and cell states. Driven by single-cell/-nucleus RNA sequencing (scRNA-seq), comprehensive cell atlas projects characterizing a wide range of organisms and tissues are currently unde...
Autores principales: | Aevermann, Brian, Zhang, Yun, Novotny, Mark, Keshk, Mohamed, Bakken, Trygve, Miller, Jeremy, Hodge, Rebecca, Lelieveldt, Boudewijn, Lein, Ed, Scheuermann, Richard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494219/ https://www.ncbi.nlm.nih.gov/pubmed/34088715 http://dx.doi.org/10.1101/gr.275569.121 |
Ejemplares similares
-
Cell type discovery using single-cell transcriptomics: implications for ontological representation
por: Aevermann, Brian D, et al.
Publicado: (2018) -
FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test
por: Zhang, Yun, et al.
Publicado: (2020) -
Cell type discovery and representation in the era of high-content single cell phenotyping
por: Bakken, Trygve, et al.
Publicado: (2017) -
A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases
por: Zeighami, Yashar, et al.
Publicado: (2023) -
Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
por: Zhang, Yun, et al.
Publicado: (2023)