Cargando…

Semisupervised adversarial neural networks for single-cell classification

Annotating cell identities is a common bottleneck in the analysis of single-cell genomics experiments. Here, we present scNym, a semisupervised, adversarial neural network that learns to transfer cell identity annotations from one experiment to another. scNym takes advantage of information in both l...

Descripción completa

Detalles Bibliográficos
Autores principales: Kimmel, Jacob C., Kelley, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494222/
https://www.ncbi.nlm.nih.gov/pubmed/33627475
http://dx.doi.org/10.1101/gr.268581.120
Descripción
Sumario:Annotating cell identities is a common bottleneck in the analysis of single-cell genomics experiments. Here, we present scNym, a semisupervised, adversarial neural network that learns to transfer cell identity annotations from one experiment to another. scNym takes advantage of information in both labeled data sets and new, unlabeled data sets to learn rich representations of cell identity that enable effective annotation transfer. We show that scNym effectively transfers annotations across experiments despite biological and technical differences, achieving performance superior to existing methods. We also show that scNym models can synthesize information from multiple training and target data sets to improve performance. We show that in addition to high accuracy, scNym models are well calibrated and interpretable with saliency methods.