Cargando…
Semisupervised adversarial neural networks for single-cell classification
Annotating cell identities is a common bottleneck in the analysis of single-cell genomics experiments. Here, we present scNym, a semisupervised, adversarial neural network that learns to transfer cell identity annotations from one experiment to another. scNym takes advantage of information in both l...
Autores principales: | Kimmel, Jacob C., Kelley, David R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494222/ https://www.ncbi.nlm.nih.gov/pubmed/33627475 http://dx.doi.org/10.1101/gr.268581.120 |
Ejemplares similares
-
iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks
por: Wang, Dongfang, et al.
Publicado: (2021) -
Semisupervised Generative Autoencoder for Single-Cell Data
por: Trong, Trung Ngo, et al.
Publicado: (2020) -
scIGANs: single-cell RNA-seq imputation using generative adversarial networks
por: Xu, Yungang, et al.
Publicado: (2020) -
SCMAG: A Semisupervised Single-Cell Clustering Method Based on Matrix Aggregation Graph Convolutional Neural Network
por: Peng, Haonan, et al.
Publicado: (2021) -
Research on Anomaly Identification and Screening and Metallogenic Prediction Based on Semisupervised Neural Network
por: Zhang, Rongqing, et al.
Publicado: (2022)