Cargando…
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of ce...
Autores principales: | Miller, Brendan F., Bambah-Mukku, Dhananjay, Dulac, Catherine, Zhuang, Xiaowei, Fan, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494224/ https://www.ncbi.nlm.nih.gov/pubmed/34035045 http://dx.doi.org/10.1101/gr.271288.120 |
Ejemplares similares
-
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023) -
Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling
por: Zimmerman, Stephanie M., et al.
Publicado: (2022) -
SpatialDB: a database for spatially resolved transcriptomes
por: Fan, Zhen, et al.
Publicado: (2020) -
Dual spatially resolved transcriptomics for human host–pathogen colocalization studies in FFPE tissue sections
por: Sounart, Hailey, et al.
Publicado: (2023) -
SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies
por: Guo, Tiantian, et al.
Publicado: (2023)