Cargando…
A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabo...
Autores principales: | Alghamdi, Norah, Chang, Wennan, Dang, Pengtao, Lu, Xiaoyu, Wan, Changlin, Gampala, Silpa, Huang, Zhi, Wang, Jiashi, Ma, Qin, Zang, Yong, Fishel, Melissa, Cao, Sha, Zhang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494226/ https://www.ncbi.nlm.nih.gov/pubmed/34301623 http://dx.doi.org/10.1101/gr.271205.120 |
Ejemplares similares
-
LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data
por: Wan, Changlin, et al.
Publicado: (2019) -
FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data
por: Zhang, Zixuan, et al.
Publicado: (2023) -
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
por: Baran, Yael, et al.
Publicado: (2019) -
APE1/Ref-1 – One Target with Multiple Indications: Emerging Aspects and New Directions
por: Mijit, Mahmut, et al.
Publicado: (2021) -
Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network
por: Liu, Xingyan, et al.
Publicado: (2023)