Cargando…

Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs

We seek the development and evaluation of a fast, accurate, and consistent method for general-purpose segmentation, based on interactive machine learning (IML). To validate our method, we identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 20 spleen scans...

Descripción completa

Detalles Bibliográficos
Autores principales: Bounias, Dimitrios, Singh, Ashish, Bakas, Spyridon, Pati, Sarthak, Rathore, Saima, Akbari, Hamed, Bilello, Michel, Greenberger, Benjamin A., Lombardo, Joseph, Chitalia, Rhea D., Jahani, Nariman, Gastounioti, Aimilia, Hershman, Michelle, Roshkovan, Leonid, Katz, Sharyn I., Yousefi, Bardia, Lou, Carolyn, Simpson, Amber L., Do, Richard K. G., Shinohara, Russell T., Kontos, Despina, Nikita, Konstantina, Davatzikos, Christos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494410/
https://www.ncbi.nlm.nih.gov/pubmed/34621541
http://dx.doi.org/10.3390/app11167488
_version_ 1784579305710288896
author Bounias, Dimitrios
Singh, Ashish
Bakas, Spyridon
Pati, Sarthak
Rathore, Saima
Akbari, Hamed
Bilello, Michel
Greenberger, Benjamin A.
Lombardo, Joseph
Chitalia, Rhea D.
Jahani, Nariman
Gastounioti, Aimilia
Hershman, Michelle
Roshkovan, Leonid
Katz, Sharyn I.
Yousefi, Bardia
Lou, Carolyn
Simpson, Amber L.
Do, Richard K. G.
Shinohara, Russell T.
Kontos, Despina
Nikita, Konstantina
Davatzikos, Christos
author_facet Bounias, Dimitrios
Singh, Ashish
Bakas, Spyridon
Pati, Sarthak
Rathore, Saima
Akbari, Hamed
Bilello, Michel
Greenberger, Benjamin A.
Lombardo, Joseph
Chitalia, Rhea D.
Jahani, Nariman
Gastounioti, Aimilia
Hershman, Michelle
Roshkovan, Leonid
Katz, Sharyn I.
Yousefi, Bardia
Lou, Carolyn
Simpson, Amber L.
Do, Richard K. G.
Shinohara, Russell T.
Kontos, Despina
Nikita, Konstantina
Davatzikos, Christos
author_sort Bounias, Dimitrios
collection PubMed
description We seek the development and evaluation of a fast, accurate, and consistent method for general-purpose segmentation, based on interactive machine learning (IML). To validate our method, we identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 20 spleen scans, with corresponding ground truth annotations. Utilizing very brief user training annotations and the adaptive geodesic distance transform, an ensemble of SVMs is trained, providing a patient-specific model applied to the whole image. Two experts segmented each cohort twice with our method and twice manually. The IML method was faster than manual annotation by 53.1% on average. We found significant (p < 0.001) overlap difference for spleen (Dice(IML)/Dice(Manual) = 0.91/0.87), breast tumors (Dice(IML)/Dice(Manual) = 0.84/0.82), and lung nodules (Dice(IML)/Dice(Manual) = 0.78/0.83). For intra-rater consistency, a significant (p = 0.003) difference was found for spleen (Dice(IML)/Dice(Manual) = 0.91/0.89). For inter-rater consistency, significant (p < 0.045) differences were found for spleen (Dice(IML)/Dice(Manual) = 0.91/0.87), breast (Dice(IML)/Dice(Manual) = 0.86/0.81), lung (Dice(IML)/Dice(Manual) = 0.85/0.89), the non-enhancing (Dice(IML)/Dice(Manual) = 0.79/0.67) and the enhancing (Dice(IML)/Dice(Manual) = 0.79/0.84) brain tumor sub-regions, which, in aggregation, favored our method. Quantitative evaluation for speed, spatial overlap, and consistency, reveals the benefits of our proposed method when compared with manual annotation, for several clinically relevant problems. We publicly release our implementation through CaPTk (Cancer Imaging Phenomics Toolkit) and as an MITK plugin.
format Online
Article
Text
id pubmed-8494410
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-84944102021-10-06 Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs Bounias, Dimitrios Singh, Ashish Bakas, Spyridon Pati, Sarthak Rathore, Saima Akbari, Hamed Bilello, Michel Greenberger, Benjamin A. Lombardo, Joseph Chitalia, Rhea D. Jahani, Nariman Gastounioti, Aimilia Hershman, Michelle Roshkovan, Leonid Katz, Sharyn I. Yousefi, Bardia Lou, Carolyn Simpson, Amber L. Do, Richard K. G. Shinohara, Russell T. Kontos, Despina Nikita, Konstantina Davatzikos, Christos Appl Sci (Basel) Article We seek the development and evaluation of a fast, accurate, and consistent method for general-purpose segmentation, based on interactive machine learning (IML). To validate our method, we identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 20 spleen scans, with corresponding ground truth annotations. Utilizing very brief user training annotations and the adaptive geodesic distance transform, an ensemble of SVMs is trained, providing a patient-specific model applied to the whole image. Two experts segmented each cohort twice with our method and twice manually. The IML method was faster than manual annotation by 53.1% on average. We found significant (p < 0.001) overlap difference for spleen (Dice(IML)/Dice(Manual) = 0.91/0.87), breast tumors (Dice(IML)/Dice(Manual) = 0.84/0.82), and lung nodules (Dice(IML)/Dice(Manual) = 0.78/0.83). For intra-rater consistency, a significant (p = 0.003) difference was found for spleen (Dice(IML)/Dice(Manual) = 0.91/0.89). For inter-rater consistency, significant (p < 0.045) differences were found for spleen (Dice(IML)/Dice(Manual) = 0.91/0.87), breast (Dice(IML)/Dice(Manual) = 0.86/0.81), lung (Dice(IML)/Dice(Manual) = 0.85/0.89), the non-enhancing (Dice(IML)/Dice(Manual) = 0.79/0.67) and the enhancing (Dice(IML)/Dice(Manual) = 0.79/0.84) brain tumor sub-regions, which, in aggregation, favored our method. Quantitative evaluation for speed, spatial overlap, and consistency, reveals the benefits of our proposed method when compared with manual annotation, for several clinically relevant problems. We publicly release our implementation through CaPTk (Cancer Imaging Phenomics Toolkit) and as an MITK plugin. 2021-08-15 2021-08-02 /pmc/articles/PMC8494410/ /pubmed/34621541 http://dx.doi.org/10.3390/app11167488 Text en https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bounias, Dimitrios
Singh, Ashish
Bakas, Spyridon
Pati, Sarthak
Rathore, Saima
Akbari, Hamed
Bilello, Michel
Greenberger, Benjamin A.
Lombardo, Joseph
Chitalia, Rhea D.
Jahani, Nariman
Gastounioti, Aimilia
Hershman, Michelle
Roshkovan, Leonid
Katz, Sharyn I.
Yousefi, Bardia
Lou, Carolyn
Simpson, Amber L.
Do, Richard K. G.
Shinohara, Russell T.
Kontos, Despina
Nikita, Konstantina
Davatzikos, Christos
Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title_full Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title_fullStr Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title_full_unstemmed Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title_short Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
title_sort interactive machine learning-based multi-label segmentation of solid tumors and organs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494410/
https://www.ncbi.nlm.nih.gov/pubmed/34621541
http://dx.doi.org/10.3390/app11167488
work_keys_str_mv AT bouniasdimitrios interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT singhashish interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT bakasspyridon interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT patisarthak interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT rathoresaima interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT akbarihamed interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT bilellomichel interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT greenbergerbenjamina interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT lombardojoseph interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT chitaliarhead interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT jahaninariman interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT gastouniotiaimilia interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT hershmanmichelle interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT roshkovanleonid interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT katzsharyni interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT yousefibardia interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT loucarolyn interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT simpsonamberl interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT dorichardkg interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT shinohararussellt interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT kontosdespina interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT nikitakonstantina interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans
AT davatzikoschristos interactivemachinelearningbasedmultilabelsegmentationofsolidtumorsandorgans