Cargando…
The use of differential privacy for census data and its impact on redistricting: The case of the 2020 U.S. Census
Census statistics play a key role in public policy decisions and social science research. However, given the risk of revealing individual information, many statistical agencies are considering disclosure control methods based on differential privacy, which add noise to tabulated data. Unlike other a...
Autores principales: | Kenny, Christopher T., Kuriwaki, Shiro, McCartan, Cory, Rosenman, Evan T. R., Simko, Tyler, Imai, Kosuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494446/ https://www.ncbi.nlm.nih.gov/pubmed/34613778 http://dx.doi.org/10.1126/sciadv.abk3283 |
Ejemplares similares
-
Simulated redistricting plans for the analysis and evaluation of redistricting in the United States
por: McCartan, Cory, et al.
Publicado: (2022) -
Widespread partisan gerrymandering mostly cancels nationally, but reduces electoral competition
por: Kenny, Christopher T., et al.
Publicado: (2023) -
Impacts of census differential privacy for small-area disease mapping to monitor health inequities
por: Li, Yanran, et al.
Publicado: (2023) -
Differential privacy in the 2020 US census: what will it do? Quantifying the accuracy/privacy tradeoff
por: Petti, Samantha, et al.
Publicado: (2020) -
Understanding unidentified human remains investigations through the United States census data
por: Rodriguez, Ashley L., et al.
Publicado: (2022)