Cargando…
A graph spatial-temporal model for predicting population density of key areas
Predicting the population density of key areas of the city is crucial. It helps reduce the spread risk of Covid-19 and predict individuals’ travel needs. Although current researches focus on using the method of clustering to predict the population density, there is almost no discussion about using s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494484/ https://www.ncbi.nlm.nih.gov/pubmed/34642506 http://dx.doi.org/10.1016/j.compeleceng.2021.107235 |
Sumario: | Predicting the population density of key areas of the city is crucial. It helps reduce the spread risk of Covid-19 and predict individuals’ travel needs. Although current researches focus on using the method of clustering to predict the population density, there is almost no discussion about using spatial-temporal models to predict the population density of key areas in a city without using actual regional images. We abstract 997 key areas and their regional connections into a graph structure and propose a model called Word Embedded Spatial-temporal Graph Convolutional Network (WE-STGCN). WE-STGCN is mainly composed of the Spatial Convolution Layer, the Temporal Convolution Layer, and the Feature Component. Based on the data set provided by the DataFountain platform, we evaluate the model and compare it with some typical models. Experimental results show that WE-STGCN has 53.97% improved to baselines on average and can commendably predicting the population density of key areas. |
---|