Cargando…
A graph spatial-temporal model for predicting population density of key areas
Predicting the population density of key areas of the city is crucial. It helps reduce the spread risk of Covid-19 and predict individuals’ travel needs. Although current researches focus on using the method of clustering to predict the population density, there is almost no discussion about using s...
Autores principales: | Xu, Zhihao, Li, Jianbo, Lv, Zhiqiang, Wang, Yue, Fu, Liping, Wang, Xinghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494484/ https://www.ncbi.nlm.nih.gov/pubmed/34642506 http://dx.doi.org/10.1016/j.compeleceng.2021.107235 |
Ejemplares similares
-
A new approach to COVID-19 data mining: A deep spatial–temporal prediction model based on tree structure for traffic revitalization index
por: Lv, Zhiqiang, et al.
Publicado: (2023) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Spatial–Temporal Self-Attention Enhanced Graph Convolutional Networks for Fitness Yoga Action Recognition
por: Wei, Guixiang, et al.
Publicado: (2023) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022)