Cargando…
A two-stage stochastic variational inequality model for storage and dynamic distribution of medical supplies in epidemic management
The storage and distribution of medical supplies are important parts of epidemic prevention and control. This paper first proposes a new nonsmooth two-stage stochastic equilibrium model of medical supplies in epidemic management. The first stage addresses the storage in the pre-disaster phase, and t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494524/ https://www.ncbi.nlm.nih.gov/pubmed/34642536 http://dx.doi.org/10.1016/j.apm.2021.09.033 |
Sumario: | The storage and distribution of medical supplies are important parts of epidemic prevention and control. This paper first proposes a new nonsmooth two-stage stochastic equilibrium model of medical supplies in epidemic management. The first stage addresses the storage in the pre-disaster phase, and the second stage focuses on the dynamic distribution by enrolling competitions among multiple hospitals over a period of time in the post-disaster phase. The uncertainties are the numbers of infected people treated in multiple hospitals during the period of time, which are time-varying around a nominal distribution predicted by historical experience. The two-stage stochastic equilibrium model is further approximated and transformed to a monotone two-stage stochastic variational inequality (SVI) model that is computationally tractable, with the aid of a smooth approximation technique. We employ the progressive hedging method (PHM) to solve a case study in the city of Wuhan in China suffered from the COVID-19 pandemic. Numerical results are presented to demonstrate the effectiveness of the proposed model in planning the storage and dynamic distribution of medical supplies in epidemic management. |
---|