Cargando…
Multimodal Medical Image Fusion Based on Multiple Latent Low-Rank Representation
A multimodal medical image fusion algorithm based on multiple latent low-rank representation is proposed to improve imaging quality by solving fuzzy details and enhancing the display of lesions. Firstly, the proposed method decomposes the source image repeatedly using latent low-rank representation...
Autores principales: | Lou, Xi-Cheng, Feng, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494599/ https://www.ncbi.nlm.nih.gov/pubmed/34630627 http://dx.doi.org/10.1155/2021/1544955 |
Ejemplares similares
-
LatLRR-FCNs: Latent Low-Rank Representation With Fully Convolutional Networks for Medical Image Fusion
por: Xu, Zhengyuan, et al.
Publicado: (2021) -
Multimodal sensor fusion in the latent representation space
por: Piechocki, Robert J., et al.
Publicado: (2023) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
DRCM: a disentangled representation network based on coordinate and multimodal attention for medical image fusion
por: Huang, Wanwan, et al.
Publicado: (2023) -
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
por: Yang, Guoliang, et al.
Publicado: (2017)