Cargando…
Comparative cellular analysis of motor cortex in human, marmoset and mouse
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494640/ https://www.ncbi.nlm.nih.gov/pubmed/34616062 http://dx.doi.org/10.1038/s41586-021-03465-8 |
_version_ | 1784579356470804480 |
---|---|
author | Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeño-Cortés, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Höllt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, António Preissl, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. |
author_facet | Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeño-Cortés, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Höllt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, António Preissl, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. |
author_sort | Bakken, Trygve E. |
collection | PubMed |
description | The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. |
format | Online Article Text |
id | pubmed-8494640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84946402021-10-29 Comparative cellular analysis of motor cortex in human, marmoset and mouse Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeño-Cortés, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Höllt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, António Preissl, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. Nature Article The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Nature Publishing Group UK 2021-10-06 2021 /pmc/articles/PMC8494640/ /pubmed/34616062 http://dx.doi.org/10.1038/s41586-021-03465-8 Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeño-Cortés, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Höllt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, António Preissl, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title | Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title_full | Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title_fullStr | Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title_full_unstemmed | Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title_short | Comparative cellular analysis of motor cortex in human, marmoset and mouse |
title_sort | comparative cellular analysis of motor cortex in human, marmoset and mouse |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494640/ https://www.ncbi.nlm.nih.gov/pubmed/34616062 http://dx.doi.org/10.1038/s41586-021-03465-8 |
work_keys_str_mv | AT bakkentrygvee comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT jorstadnikolasl comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT huqiwen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT lakeblueb comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT tianwei comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT kalmbachbriane comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT crowmegan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT hodgerebeccad comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT krienenfennam comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT sorensenstacia comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT eggermontjeroen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT yaozizhen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT aevermannbriand comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT aldridgeandrewi comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT bartlettanna comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT bertagnollidarren comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT caspertamara comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT castanonrosag comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT crichtonkirsten comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT daigletanyal comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT dalleyrachel comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT deenick comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT dembrownikolai comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT diepdinh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT dingsonglin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT dongweixiu comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT fangrongxin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT fischerstephan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT goldmanmelissa comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT goldyjeff comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT graybucklucast comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT herbbrianr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT houxiaomeng comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT kancherlajayaram comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT krollmatthew comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT lathiakanan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT vanlewbaldur comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT liyangeric comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT liuchristines comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT liuhanqing comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT lucerojacintad comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT mahurkaranup comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT mcmillendelissa comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT millerjeremya comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT moussamarmar comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT neryjosephr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT nicovichphilipr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT niushengyong comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT orvisjoshua comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT osteenjuliak comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT owenscott comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT palmercarterr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT phamthanh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT plongthongkumnongluk comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT poirionolivier comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT reednoram comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT rimorinchristine comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT rivkinangeline comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT romanowwilliamj comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT sedenocortesadrianae comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT silettikimberly comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT somasundaramsaroja comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT sulcjosef comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT tieumichael comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT torkelsonamy comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT tungherman comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT wangxinxin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT xiefangming comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT yannyannamarie comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT zhangrenee comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT amentsetha comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT behrensmmargarita comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT bravohectorcorrada comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT chunjerold comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT dobinalexander comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT gillisjesse comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT hertzanoronna comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT hofpatrickr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT holltthomas comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT horwitzgregoryd comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT keenecdirk comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT kharchenkopeterv comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT koandrewl comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT lelieveldtboudewijnp comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT luochongyuan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT mukamelerana comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT pintoduarteantonio comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT preisslsebastian comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT regevaviv comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT renbing comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT scheuermannrichardh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT smithkimberly comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT spainwilliamj comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT whiteowenr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT kochchristof comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT hawrylyczmichael comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT tasicbosiljka comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT macoskoevanz comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT mccarrollstevena comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT tingjonathant comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT zenghongkui comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT zhangkun comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT fengguoping comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT eckerjosephr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT linnarssonsten comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse AT leineds comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse |