Cargando…

Comparative cellular analysis of motor cortex in human, marmoset and mouse

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakken, Trygve E., Jorstad, Nikolas L., Hu, Qiwen, Lake, Blue B., Tian, Wei, Kalmbach, Brian E., Crow, Megan, Hodge, Rebecca D., Krienen, Fenna M., Sorensen, Staci A., Eggermont, Jeroen, Yao, Zizhen, Aevermann, Brian D., Aldridge, Andrew I., Bartlett, Anna, Bertagnolli, Darren, Casper, Tamara, Castanon, Rosa G., Crichton, Kirsten, Daigle, Tanya L., Dalley, Rachel, Dee, Nick, Dembrow, Nikolai, Diep, Dinh, Ding, Song-Lin, Dong, Weixiu, Fang, Rongxin, Fischer, Stephan, Goldman, Melissa, Goldy, Jeff, Graybuck, Lucas T., Herb, Brian R., Hou, Xiaomeng, Kancherla, Jayaram, Kroll, Matthew, Lathia, Kanan, van Lew, Baldur, Li, Yang Eric, Liu, Christine S., Liu, Hanqing, Lucero, Jacinta D., Mahurkar, Anup, McMillen, Delissa, Miller, Jeremy A., Moussa, Marmar, Nery, Joseph R., Nicovich, Philip R., Niu, Sheng-Yong, Orvis, Joshua, Osteen, Julia K., Owen, Scott, Palmer, Carter R., Pham, Thanh, Plongthongkum, Nongluk, Poirion, Olivier, Reed, Nora M., Rimorin, Christine, Rivkin, Angeline, Romanow, William J., Sedeño-Cortés, Adriana E., Siletti, Kimberly, Somasundaram, Saroja, Sulc, Josef, Tieu, Michael, Torkelson, Amy, Tung, Herman, Wang, Xinxin, Xie, Fangming, Yanny, Anna Marie, Zhang, Renee, Ament, Seth A., Behrens, M. Margarita, Bravo, Hector Corrada, Chun, Jerold, Dobin, Alexander, Gillis, Jesse, Hertzano, Ronna, Hof, Patrick R., Höllt, Thomas, Horwitz, Gregory D., Keene, C. Dirk, Kharchenko, Peter V., Ko, Andrew L., Lelieveldt, Boudewijn P., Luo, Chongyuan, Mukamel, Eran A., Pinto-Duarte, António, Preissl, Sebastian, Regev, Aviv, Ren, Bing, Scheuermann, Richard H., Smith, Kimberly, Spain, William J., White, Owen R., Koch, Christof, Hawrylycz, Michael, Tasic, Bosiljka, Macosko, Evan Z., McCarroll, Steven A., Ting, Jonathan T., Zeng, Hongkui, Zhang, Kun, Feng, Guoping, Ecker, Joseph R., Linnarsson, Sten, Lein, Ed S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494640/
https://www.ncbi.nlm.nih.gov/pubmed/34616062
http://dx.doi.org/10.1038/s41586-021-03465-8
_version_ 1784579356470804480
author Bakken, Trygve E.
Jorstad, Nikolas L.
Hu, Qiwen
Lake, Blue B.
Tian, Wei
Kalmbach, Brian E.
Crow, Megan
Hodge, Rebecca D.
Krienen, Fenna M.
Sorensen, Staci A.
Eggermont, Jeroen
Yao, Zizhen
Aevermann, Brian D.
Aldridge, Andrew I.
Bartlett, Anna
Bertagnolli, Darren
Casper, Tamara
Castanon, Rosa G.
Crichton, Kirsten
Daigle, Tanya L.
Dalley, Rachel
Dee, Nick
Dembrow, Nikolai
Diep, Dinh
Ding, Song-Lin
Dong, Weixiu
Fang, Rongxin
Fischer, Stephan
Goldman, Melissa
Goldy, Jeff
Graybuck, Lucas T.
Herb, Brian R.
Hou, Xiaomeng
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
van Lew, Baldur
Li, Yang Eric
Liu, Christine S.
Liu, Hanqing
Lucero, Jacinta D.
Mahurkar, Anup
McMillen, Delissa
Miller, Jeremy A.
Moussa, Marmar
Nery, Joseph R.
Nicovich, Philip R.
Niu, Sheng-Yong
Orvis, Joshua
Osteen, Julia K.
Owen, Scott
Palmer, Carter R.
Pham, Thanh
Plongthongkum, Nongluk
Poirion, Olivier
Reed, Nora M.
Rimorin, Christine
Rivkin, Angeline
Romanow, William J.
Sedeño-Cortés, Adriana E.
Siletti, Kimberly
Somasundaram, Saroja
Sulc, Josef
Tieu, Michael
Torkelson, Amy
Tung, Herman
Wang, Xinxin
Xie, Fangming
Yanny, Anna Marie
Zhang, Renee
Ament, Seth A.
Behrens, M. Margarita
Bravo, Hector Corrada
Chun, Jerold
Dobin, Alexander
Gillis, Jesse
Hertzano, Ronna
Hof, Patrick R.
Höllt, Thomas
Horwitz, Gregory D.
Keene, C. Dirk
Kharchenko, Peter V.
Ko, Andrew L.
Lelieveldt, Boudewijn P.
Luo, Chongyuan
Mukamel, Eran A.
Pinto-Duarte, António
Preissl, Sebastian
Regev, Aviv
Ren, Bing
Scheuermann, Richard H.
Smith, Kimberly
Spain, William J.
White, Owen R.
Koch, Christof
Hawrylycz, Michael
Tasic, Bosiljka
Macosko, Evan Z.
McCarroll, Steven A.
Ting, Jonathan T.
Zeng, Hongkui
Zhang, Kun
Feng, Guoping
Ecker, Joseph R.
Linnarsson, Sten
Lein, Ed S.
author_facet Bakken, Trygve E.
Jorstad, Nikolas L.
Hu, Qiwen
Lake, Blue B.
Tian, Wei
Kalmbach, Brian E.
Crow, Megan
Hodge, Rebecca D.
Krienen, Fenna M.
Sorensen, Staci A.
Eggermont, Jeroen
Yao, Zizhen
Aevermann, Brian D.
Aldridge, Andrew I.
Bartlett, Anna
Bertagnolli, Darren
Casper, Tamara
Castanon, Rosa G.
Crichton, Kirsten
Daigle, Tanya L.
Dalley, Rachel
Dee, Nick
Dembrow, Nikolai
Diep, Dinh
Ding, Song-Lin
Dong, Weixiu
Fang, Rongxin
Fischer, Stephan
Goldman, Melissa
Goldy, Jeff
Graybuck, Lucas T.
Herb, Brian R.
Hou, Xiaomeng
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
van Lew, Baldur
Li, Yang Eric
Liu, Christine S.
Liu, Hanqing
Lucero, Jacinta D.
Mahurkar, Anup
McMillen, Delissa
Miller, Jeremy A.
Moussa, Marmar
Nery, Joseph R.
Nicovich, Philip R.
Niu, Sheng-Yong
Orvis, Joshua
Osteen, Julia K.
Owen, Scott
Palmer, Carter R.
Pham, Thanh
Plongthongkum, Nongluk
Poirion, Olivier
Reed, Nora M.
Rimorin, Christine
Rivkin, Angeline
Romanow, William J.
Sedeño-Cortés, Adriana E.
Siletti, Kimberly
Somasundaram, Saroja
Sulc, Josef
Tieu, Michael
Torkelson, Amy
Tung, Herman
Wang, Xinxin
Xie, Fangming
Yanny, Anna Marie
Zhang, Renee
Ament, Seth A.
Behrens, M. Margarita
Bravo, Hector Corrada
Chun, Jerold
Dobin, Alexander
Gillis, Jesse
Hertzano, Ronna
Hof, Patrick R.
Höllt, Thomas
Horwitz, Gregory D.
Keene, C. Dirk
Kharchenko, Peter V.
Ko, Andrew L.
Lelieveldt, Boudewijn P.
Luo, Chongyuan
Mukamel, Eran A.
Pinto-Duarte, António
Preissl, Sebastian
Regev, Aviv
Ren, Bing
Scheuermann, Richard H.
Smith, Kimberly
Spain, William J.
White, Owen R.
Koch, Christof
Hawrylycz, Michael
Tasic, Bosiljka
Macosko, Evan Z.
McCarroll, Steven A.
Ting, Jonathan T.
Zeng, Hongkui
Zhang, Kun
Feng, Guoping
Ecker, Joseph R.
Linnarsson, Sten
Lein, Ed S.
author_sort Bakken, Trygve E.
collection PubMed
description The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
format Online
Article
Text
id pubmed-8494640
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84946402021-10-29 Comparative cellular analysis of motor cortex in human, marmoset and mouse Bakken, Trygve E. Jorstad, Nikolas L. Hu, Qiwen Lake, Blue B. Tian, Wei Kalmbach, Brian E. Crow, Megan Hodge, Rebecca D. Krienen, Fenna M. Sorensen, Staci A. Eggermont, Jeroen Yao, Zizhen Aevermann, Brian D. Aldridge, Andrew I. Bartlett, Anna Bertagnolli, Darren Casper, Tamara Castanon, Rosa G. Crichton, Kirsten Daigle, Tanya L. Dalley, Rachel Dee, Nick Dembrow, Nikolai Diep, Dinh Ding, Song-Lin Dong, Weixiu Fang, Rongxin Fischer, Stephan Goldman, Melissa Goldy, Jeff Graybuck, Lucas T. Herb, Brian R. Hou, Xiaomeng Kancherla, Jayaram Kroll, Matthew Lathia, Kanan van Lew, Baldur Li, Yang Eric Liu, Christine S. Liu, Hanqing Lucero, Jacinta D. Mahurkar, Anup McMillen, Delissa Miller, Jeremy A. Moussa, Marmar Nery, Joseph R. Nicovich, Philip R. Niu, Sheng-Yong Orvis, Joshua Osteen, Julia K. Owen, Scott Palmer, Carter R. Pham, Thanh Plongthongkum, Nongluk Poirion, Olivier Reed, Nora M. Rimorin, Christine Rivkin, Angeline Romanow, William J. Sedeño-Cortés, Adriana E. Siletti, Kimberly Somasundaram, Saroja Sulc, Josef Tieu, Michael Torkelson, Amy Tung, Herman Wang, Xinxin Xie, Fangming Yanny, Anna Marie Zhang, Renee Ament, Seth A. Behrens, M. Margarita Bravo, Hector Corrada Chun, Jerold Dobin, Alexander Gillis, Jesse Hertzano, Ronna Hof, Patrick R. Höllt, Thomas Horwitz, Gregory D. Keene, C. Dirk Kharchenko, Peter V. Ko, Andrew L. Lelieveldt, Boudewijn P. Luo, Chongyuan Mukamel, Eran A. Pinto-Duarte, António Preissl, Sebastian Regev, Aviv Ren, Bing Scheuermann, Richard H. Smith, Kimberly Spain, William J. White, Owen R. Koch, Christof Hawrylycz, Michael Tasic, Bosiljka Macosko, Evan Z. McCarroll, Steven A. Ting, Jonathan T. Zeng, Hongkui Zhang, Kun Feng, Guoping Ecker, Joseph R. Linnarsson, Sten Lein, Ed S. Nature Article The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals(1). Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Nature Publishing Group UK 2021-10-06 2021 /pmc/articles/PMC8494640/ /pubmed/34616062 http://dx.doi.org/10.1038/s41586-021-03465-8 Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bakken, Trygve E.
Jorstad, Nikolas L.
Hu, Qiwen
Lake, Blue B.
Tian, Wei
Kalmbach, Brian E.
Crow, Megan
Hodge, Rebecca D.
Krienen, Fenna M.
Sorensen, Staci A.
Eggermont, Jeroen
Yao, Zizhen
Aevermann, Brian D.
Aldridge, Andrew I.
Bartlett, Anna
Bertagnolli, Darren
Casper, Tamara
Castanon, Rosa G.
Crichton, Kirsten
Daigle, Tanya L.
Dalley, Rachel
Dee, Nick
Dembrow, Nikolai
Diep, Dinh
Ding, Song-Lin
Dong, Weixiu
Fang, Rongxin
Fischer, Stephan
Goldman, Melissa
Goldy, Jeff
Graybuck, Lucas T.
Herb, Brian R.
Hou, Xiaomeng
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
van Lew, Baldur
Li, Yang Eric
Liu, Christine S.
Liu, Hanqing
Lucero, Jacinta D.
Mahurkar, Anup
McMillen, Delissa
Miller, Jeremy A.
Moussa, Marmar
Nery, Joseph R.
Nicovich, Philip R.
Niu, Sheng-Yong
Orvis, Joshua
Osteen, Julia K.
Owen, Scott
Palmer, Carter R.
Pham, Thanh
Plongthongkum, Nongluk
Poirion, Olivier
Reed, Nora M.
Rimorin, Christine
Rivkin, Angeline
Romanow, William J.
Sedeño-Cortés, Adriana E.
Siletti, Kimberly
Somasundaram, Saroja
Sulc, Josef
Tieu, Michael
Torkelson, Amy
Tung, Herman
Wang, Xinxin
Xie, Fangming
Yanny, Anna Marie
Zhang, Renee
Ament, Seth A.
Behrens, M. Margarita
Bravo, Hector Corrada
Chun, Jerold
Dobin, Alexander
Gillis, Jesse
Hertzano, Ronna
Hof, Patrick R.
Höllt, Thomas
Horwitz, Gregory D.
Keene, C. Dirk
Kharchenko, Peter V.
Ko, Andrew L.
Lelieveldt, Boudewijn P.
Luo, Chongyuan
Mukamel, Eran A.
Pinto-Duarte, António
Preissl, Sebastian
Regev, Aviv
Ren, Bing
Scheuermann, Richard H.
Smith, Kimberly
Spain, William J.
White, Owen R.
Koch, Christof
Hawrylycz, Michael
Tasic, Bosiljka
Macosko, Evan Z.
McCarroll, Steven A.
Ting, Jonathan T.
Zeng, Hongkui
Zhang, Kun
Feng, Guoping
Ecker, Joseph R.
Linnarsson, Sten
Lein, Ed S.
Comparative cellular analysis of motor cortex in human, marmoset and mouse
title Comparative cellular analysis of motor cortex in human, marmoset and mouse
title_full Comparative cellular analysis of motor cortex in human, marmoset and mouse
title_fullStr Comparative cellular analysis of motor cortex in human, marmoset and mouse
title_full_unstemmed Comparative cellular analysis of motor cortex in human, marmoset and mouse
title_short Comparative cellular analysis of motor cortex in human, marmoset and mouse
title_sort comparative cellular analysis of motor cortex in human, marmoset and mouse
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494640/
https://www.ncbi.nlm.nih.gov/pubmed/34616062
http://dx.doi.org/10.1038/s41586-021-03465-8
work_keys_str_mv AT bakkentrygvee comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT jorstadnikolasl comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT huqiwen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT lakeblueb comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT tianwei comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT kalmbachbriane comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT crowmegan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT hodgerebeccad comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT krienenfennam comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT sorensenstacia comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT eggermontjeroen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT yaozizhen comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT aevermannbriand comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT aldridgeandrewi comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT bartlettanna comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT bertagnollidarren comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT caspertamara comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT castanonrosag comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT crichtonkirsten comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT daigletanyal comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT dalleyrachel comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT deenick comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT dembrownikolai comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT diepdinh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT dingsonglin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT dongweixiu comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT fangrongxin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT fischerstephan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT goldmanmelissa comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT goldyjeff comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT graybucklucast comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT herbbrianr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT houxiaomeng comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT kancherlajayaram comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT krollmatthew comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT lathiakanan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT vanlewbaldur comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT liyangeric comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT liuchristines comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT liuhanqing comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT lucerojacintad comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT mahurkaranup comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT mcmillendelissa comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT millerjeremya comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT moussamarmar comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT neryjosephr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT nicovichphilipr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT niushengyong comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT orvisjoshua comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT osteenjuliak comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT owenscott comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT palmercarterr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT phamthanh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT plongthongkumnongluk comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT poirionolivier comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT reednoram comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT rimorinchristine comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT rivkinangeline comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT romanowwilliamj comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT sedenocortesadrianae comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT silettikimberly comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT somasundaramsaroja comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT sulcjosef comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT tieumichael comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT torkelsonamy comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT tungherman comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT wangxinxin comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT xiefangming comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT yannyannamarie comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT zhangrenee comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT amentsetha comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT behrensmmargarita comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT bravohectorcorrada comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT chunjerold comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT dobinalexander comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT gillisjesse comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT hertzanoronna comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT hofpatrickr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT holltthomas comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT horwitzgregoryd comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT keenecdirk comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT kharchenkopeterv comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT koandrewl comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT lelieveldtboudewijnp comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT luochongyuan comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT mukamelerana comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT pintoduarteantonio comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT preisslsebastian comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT regevaviv comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT renbing comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT scheuermannrichardh comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT smithkimberly comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT spainwilliamj comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT whiteowenr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT kochchristof comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT hawrylyczmichael comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT tasicbosiljka comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT macoskoevanz comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT mccarrollstevena comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT tingjonathant comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT zenghongkui comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT zhangkun comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT fengguoping comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT eckerjosephr comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT linnarssonsten comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse
AT leineds comparativecellularanalysisofmotorcortexinhumanmarmosetandmouse