Cargando…
Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System
Compared with low-yield extraction from plants and environmentally unfriendly chemical synthesis, biocatalysis by asparagine synthetase (AS) for preparation of L-asparagine (L-Asn) has become a potential synthetic method. However, low enzyme activity of AS and high cost of ATP in this reaction restr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495130/ https://www.ncbi.nlm.nih.gov/pubmed/34631686 http://dx.doi.org/10.3389/fbioe.2021.747404 |
_version_ | 1784579470801240064 |
---|---|
author | Luo, Wei Xu, Jinglong Chen, Huiying Zhang, Huili Yang, Peilong Yu, Xiaobin |
author_facet | Luo, Wei Xu, Jinglong Chen, Huiying Zhang, Huili Yang, Peilong Yu, Xiaobin |
author_sort | Luo, Wei |
collection | PubMed |
description | Compared with low-yield extraction from plants and environmentally unfriendly chemical synthesis, biocatalysis by asparagine synthetase (AS) for preparation of L-asparagine (L-Asn) has become a potential synthetic method. However, low enzyme activity of AS and high cost of ATP in this reaction restricts the large-scale preparation of L-Asn by biocatalysis. In this study, gene mining strategy was used to search for novel AS with high enzyme activity by expressing them in Escherichia coli BL21 (DE3) or Bacillus subtilis WB600. The obtained LsaAS-A was determined for its enzymatic properties and used for subsequent preparation of L-Asn. In order to reduce the use of ATP, a class III polyphosphate kinase 2 from Deinococcus ficus (DfiPPK2-Ⅲ) was cloned and expressed in E. coli BL21 (DE3), Rosetta (DE3) or RosettagamiB (DE3) for ATP regeneration. A coupling reaction system including whole cells expressing LsaAS-A and DfiPPK2-Ⅲ was constructed to prepare L-Asn from L-aspartic acid (L-Asp). Batch catalytic experiments showed that sodium hexametaphosphate (>60 mmol L(−1)) and L-Asp (>100 mmol L(−1)) could inhibit the synthesis of L-Asn. Under fed-batch mode, L-Asn yield reached 90.15% with twice feeding of sodium hexametaphosphate. A final concentration of 218.26 mmol L(−1) L-Asn with a yield of 64.19% was obtained when L-Asp and sodium hexametaphosphate were fed simultaneously. |
format | Online Article Text |
id | pubmed-8495130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84951302021-10-08 Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System Luo, Wei Xu, Jinglong Chen, Huiying Zhang, Huili Yang, Peilong Yu, Xiaobin Front Bioeng Biotechnol Bioengineering and Biotechnology Compared with low-yield extraction from plants and environmentally unfriendly chemical synthesis, biocatalysis by asparagine synthetase (AS) for preparation of L-asparagine (L-Asn) has become a potential synthetic method. However, low enzyme activity of AS and high cost of ATP in this reaction restricts the large-scale preparation of L-Asn by biocatalysis. In this study, gene mining strategy was used to search for novel AS with high enzyme activity by expressing them in Escherichia coli BL21 (DE3) or Bacillus subtilis WB600. The obtained LsaAS-A was determined for its enzymatic properties and used for subsequent preparation of L-Asn. In order to reduce the use of ATP, a class III polyphosphate kinase 2 from Deinococcus ficus (DfiPPK2-Ⅲ) was cloned and expressed in E. coli BL21 (DE3), Rosetta (DE3) or RosettagamiB (DE3) for ATP regeneration. A coupling reaction system including whole cells expressing LsaAS-A and DfiPPK2-Ⅲ was constructed to prepare L-Asn from L-aspartic acid (L-Asp). Batch catalytic experiments showed that sodium hexametaphosphate (>60 mmol L(−1)) and L-Asp (>100 mmol L(−1)) could inhibit the synthesis of L-Asn. Under fed-batch mode, L-Asn yield reached 90.15% with twice feeding of sodium hexametaphosphate. A final concentration of 218.26 mmol L(−1) L-Asn with a yield of 64.19% was obtained when L-Asp and sodium hexametaphosphate were fed simultaneously. Frontiers Media S.A. 2021-09-23 /pmc/articles/PMC8495130/ /pubmed/34631686 http://dx.doi.org/10.3389/fbioe.2021.747404 Text en Copyright © 2021 Luo, Xu, Chen, Zhang, Yang and Yu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Luo, Wei Xu, Jinglong Chen, Huiying Zhang, Huili Yang, Peilong Yu, Xiaobin Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title | Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title_full | Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title_fullStr | Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title_full_unstemmed | Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title_short | Synthesis of L-asparagine Catalyzed by a Novel Asparagine Synthase Coupled With an ATP Regeneration System |
title_sort | synthesis of l-asparagine catalyzed by a novel asparagine synthase coupled with an atp regeneration system |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495130/ https://www.ncbi.nlm.nih.gov/pubmed/34631686 http://dx.doi.org/10.3389/fbioe.2021.747404 |
work_keys_str_mv | AT luowei synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem AT xujinglong synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem AT chenhuiying synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem AT zhanghuili synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem AT yangpeilong synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem AT yuxiaobin synthesisoflasparaginecatalyzedbyanovelasparaginesynthasecoupledwithanatpregenerationsystem |