Cargando…
A Unified Framework for Inattention Estimation From Resting State Phase Synchrony Using Machine Learning
Inattention is one of the most significant clinical symptoms for evaluating attention deficit hyperactivity disorder (ADHD). Previous inattention estimations were performed using clinical scales. Recently, predictive models for inattention have been established for brain-behavior estimation using ne...
Autores principales: | Wang, Xun-Heng, Li, Lihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495194/ https://www.ncbi.nlm.nih.gov/pubmed/34630522 http://dx.doi.org/10.3389/fgene.2021.728913 |
Ejemplares similares
-
A New Machine Learning-Based Framework for Mapping Uncertainty Analysis in RNA-Seq Read Alignment and Gene Expression Estimation
por: McDermaid, Adam, et al.
Publicado: (2018) -
Phase-Amplitude Markers of Synchrony and Noise: A Resting-State and TMS-EEG Study of Schizophrenia
por: Freche, Dominik, et al.
Publicado: (2020) -
Test–Retest Reliability of Synchrony and Metastability in Resting State fMRI
por: Yang, Lan, et al.
Publicado: (2021) -
Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system
por: Das, Jutan, et al.
Publicado: (2023) -
Inattentive and hyperactive traits differentially associate with interindividual functional synchrony during video viewing in young children without ADHD
por: Tansey, Ryann, et al.
Publicado: (2022)