Cargando…
An Iterative and Collaborative End-to-End Methodology Applied to Digital Mental Health
Artificial intelligence (AI) algorithms together with advances in data storage have recently made it possible to better characterize, predict, prevent, and treat a range of psychiatric illnesses. Amid the rapidly growing number of biological devices and the exponential accumulation of data in the me...
Autores principales: | Boulos, Laura Joy, Mendes, Alexandre, Delmas, Alexandra, Chraibi Kaadoud, Ikram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495427/ https://www.ncbi.nlm.nih.gov/pubmed/34630171 http://dx.doi.org/10.3389/fpsyt.2021.574440 |
Ejemplares similares
-
An End-to-End Depression Recognition Method Based on EEGNet
por: Liu, Bo, et al.
Publicado: (2022) -
The end of Roe v. Wade: implications for Women’s mental health and care
por: Londoño Tobón, Amalia, et al.
Publicado: (2023) -
End-of-Life Decision-Making Capacity in Older People With Serious Mental Illness
por: Kotzé, Carla, et al.
Publicado: (2021) -
Active Involvement of End Users When Developing Web-Based Mental Health Interventions
por: de Beurs, Derek, et al.
Publicado: (2017) -
Ageism, human rights and ethical aspects of end-of-life care for older people with serious mental illness
por: Kotzé, Carla, et al.
Publicado: (2022)