Cargando…
Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients
The purpose of this study is to establish a novel pulmonary embolism (PE) risk prediction model based on machine learning (ML) methods and to evaluate the predictive performance of the model and the contribution of variables to the predictive performance. We conducted a retrospective study at the Sh...
Autores principales: | Hou, Lengchen, Hu, Longjun, Gao, Wenxue, Sheng, Wenbo, Hao, Zedong, Chen, Yiwei, Li, Jiyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495515/ https://www.ncbi.nlm.nih.gov/pubmed/34558325 http://dx.doi.org/10.1177/10760296211040868 |
Ejemplares similares
-
Predicting pulmonary embolism among hospitalized patients with machine learning algorithms
por: Ryan, Logan, et al.
Publicado: (2022) -
Hospitalization for pulmonary embolism associated with antecedent testosterone or estrogen therapy in patients found to have familial and acquired thrombophilia
por: Prince, Marloe, et al.
Publicado: (2016) -
Combination of D-dimer and simplified pulmonary embolism severity index to improve prediction of hospital death in patients with acute pulmonary embolism
por: Wu, Hai-Di, et al.
Publicado: (2020) -
Controlling Nutritional Status Score Predicts In-Hospital Mortality in Acute Pulmonary Embolism
por: Yıldırım, Birdal, et al.
Publicado: (2022) -
d-Dimer Assessment Improves the Simplified Pulmonary Embolism Severity Index for In-Hospital Risk Stratification in Acute Pulmonary Embolism
por: Kozlowska, Marta, et al.
Publicado: (2018)