Cargando…

Single-cell data clustering based on sparse optimization and low-rank matrix factorization

Unsupervised clustering is a fundamental step of single-cell RNA-sequencing (scRNA-seq) data analysis. This issue has inspired several clustering methods to classify cells in scRNA-seq data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yinlei, Li, Bin, Chen, Falai, Qu, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495739/
https://www.ncbi.nlm.nih.gov/pubmed/33787873
http://dx.doi.org/10.1093/g3journal/jkab098
Descripción
Sumario:Unsupervised clustering is a fundamental step of single-cell RNA-sequencing (scRNA-seq) data analysis. This issue has inspired several clustering methods to classify cells in scRNA-seq data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose a new algorithm for scRNA-seq data clustering based on Sparse Optimization and low-rank matrix factorization (scSO). We applied our scSO algorithm to analyze multiple benchmark datasets and showed that the cluster number predicted by scSO was close to the number of reference cell types and that most cells were correctly classified. Our scSO algorithm is available at https://github.com/QuKunLab/scSO. Overall, this study demonstrates a potent cell clustering approach that can help researchers distinguish cell types in single- scRNA-seq data.