Cargando…
Single-cell data clustering based on sparse optimization and low-rank matrix factorization
Unsupervised clustering is a fundamental step of single-cell RNA-sequencing (scRNA-seq) data analysis. This issue has inspired several clustering methods to classify cells in scRNA-seq data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose...
Autores principales: | Hu, Yinlei, Li, Bin, Chen, Falai, Qu, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495739/ https://www.ncbi.nlm.nih.gov/pubmed/33787873 http://dx.doi.org/10.1093/g3journal/jkab098 |
Ejemplares similares
-
Gap-com: general model selection criterion for sparse undirected gene networks with nontrivial community structure
por: Kuismin, Markku, et al.
Publicado: (2021) -
DPAC: A Tool for Differential Poly(A)–Cluster Usage from Poly(A)–Targeted RNAseq Data
por: Routh, Andrew
Publicado: (2019) -
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures
por: Sherman, Thomas D., et al.
Publicado: (2020) -
ARSDA: A New Approach for Storing, Transmitting and Analyzing Transcriptomic Data
por: Xia, Xuhua
Publicado: (2017)