Cargando…
Comparative Studies on Hydraulic Fracturing Fluids for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer versus Guar Gum
[Image: see text] The increasing energy demand has prompted engineers to explore deeper wells where rich oil and gas reserves exist. However, the high-temperature and high-salt conditions have impeded the further application of traditional water-based fracturing fluids in such reservoirs. Therefore,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495843/ https://www.ncbi.nlm.nih.gov/pubmed/34632200 http://dx.doi.org/10.1021/acsomega.1c03394 |
_version_ | 1784579632246292480 |
---|---|
author | Cao, Xiaoqin Shi, Yiwen Li, Wenzhi Zeng, Peiyun Zheng, Zhuo Feng, Yujun Yin, Hongyao |
author_facet | Cao, Xiaoqin Shi, Yiwen Li, Wenzhi Zeng, Peiyun Zheng, Zhuo Feng, Yujun Yin, Hongyao |
author_sort | Cao, Xiaoqin |
collection | PubMed |
description | [Image: see text] The increasing energy demand has prompted engineers to explore deeper wells where rich oil and gas reserves exist. However, the high-temperature and high-salt conditions have impeded the further application of traditional water-based fracturing fluids in such reservoirs. Therefore, it is urgent to develop fracturing fluids that are suitable for such geographic characteristics. In this study, for the first time, a novel synthetic polymer, poly-(acrylamide-co-acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (P3A), was investigated as a rheological modifier for water-based fracturing fluids in high-temperature and high-salt conditions and compared with a guar gum system. Results showed that the apparent viscosity increased with increasing P3A and guar gum concentrations, and the thickening ability of P3A was much better than that of guar gum. Despite the better shear and temperature resistance and proppant suspension ability of guar gum fluids in high-temperature and saturated salt conditions, plentiful solid residues after gel-breaking have prevented their progress in the petroleum industry. P3A fluids have no residues, but the unsatisfying proppant suspension capability and high dosage encourage us to promote their rheological performance via interaction with an organic zirconium crosslinker. Infrared spectroscopy and scanning electron microscopy were applied to guarantee the successful reaction of P3A with the crosslinker. The subsequent investigation indicated that the transformed fracturing fluid exhibited remarkably improved thickening capability and satisfying rheological performance in terms of temperature and shear resistance and proppant-carrying ability as well as gel-breaking results in a high-temperature and saturated salt environment. All of the above results suggest the potential application of crosslinked P3A in hydraulic fracturing for the reservoirs with hostile conditions, and this article also provides a new orientation for synthetic polymers utilized in the oil and gas industry. |
format | Online Article Text |
id | pubmed-8495843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84958432021-10-08 Comparative Studies on Hydraulic Fracturing Fluids for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer versus Guar Gum Cao, Xiaoqin Shi, Yiwen Li, Wenzhi Zeng, Peiyun Zheng, Zhuo Feng, Yujun Yin, Hongyao ACS Omega [Image: see text] The increasing energy demand has prompted engineers to explore deeper wells where rich oil and gas reserves exist. However, the high-temperature and high-salt conditions have impeded the further application of traditional water-based fracturing fluids in such reservoirs. Therefore, it is urgent to develop fracturing fluids that are suitable for such geographic characteristics. In this study, for the first time, a novel synthetic polymer, poly-(acrylamide-co-acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (P3A), was investigated as a rheological modifier for water-based fracturing fluids in high-temperature and high-salt conditions and compared with a guar gum system. Results showed that the apparent viscosity increased with increasing P3A and guar gum concentrations, and the thickening ability of P3A was much better than that of guar gum. Despite the better shear and temperature resistance and proppant suspension ability of guar gum fluids in high-temperature and saturated salt conditions, plentiful solid residues after gel-breaking have prevented their progress in the petroleum industry. P3A fluids have no residues, but the unsatisfying proppant suspension capability and high dosage encourage us to promote their rheological performance via interaction with an organic zirconium crosslinker. Infrared spectroscopy and scanning electron microscopy were applied to guarantee the successful reaction of P3A with the crosslinker. The subsequent investigation indicated that the transformed fracturing fluid exhibited remarkably improved thickening capability and satisfying rheological performance in terms of temperature and shear resistance and proppant-carrying ability as well as gel-breaking results in a high-temperature and saturated salt environment. All of the above results suggest the potential application of crosslinked P3A in hydraulic fracturing for the reservoirs with hostile conditions, and this article also provides a new orientation for synthetic polymers utilized in the oil and gas industry. American Chemical Society 2021-09-21 /pmc/articles/PMC8495843/ /pubmed/34632200 http://dx.doi.org/10.1021/acsomega.1c03394 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Cao, Xiaoqin Shi, Yiwen Li, Wenzhi Zeng, Peiyun Zheng, Zhuo Feng, Yujun Yin, Hongyao Comparative Studies on Hydraulic Fracturing Fluids for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer versus Guar Gum |
title | Comparative Studies on Hydraulic Fracturing Fluids
for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer
versus Guar Gum |
title_full | Comparative Studies on Hydraulic Fracturing Fluids
for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer
versus Guar Gum |
title_fullStr | Comparative Studies on Hydraulic Fracturing Fluids
for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer
versus Guar Gum |
title_full_unstemmed | Comparative Studies on Hydraulic Fracturing Fluids
for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer
versus Guar Gum |
title_short | Comparative Studies on Hydraulic Fracturing Fluids
for High-Temperature and High-Salt Oil Reservoirs: Synthetic Polymer
versus Guar Gum |
title_sort | comparative studies on hydraulic fracturing fluids
for high-temperature and high-salt oil reservoirs: synthetic polymer
versus guar gum |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495843/ https://www.ncbi.nlm.nih.gov/pubmed/34632200 http://dx.doi.org/10.1021/acsomega.1c03394 |
work_keys_str_mv | AT caoxiaoqin comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT shiyiwen comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT liwenzhi comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT zengpeiyun comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT zhengzhuo comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT fengyujun comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum AT yinhongyao comparativestudiesonhydraulicfracturingfluidsforhightemperatureandhighsaltoilreservoirssyntheticpolymerversusguargum |