Cargando…
Translating the InChI: adapting neural machine translation to predict IUPAC names from a chemical identifier
We present a sequence-to-sequence machine learning model for predicting the IUPAC name of a chemical from its standard International Chemical Identifier (InChI). The model uses two stacks of transformers in an encoder-decoder architecture, a setup similar to the neural networks used in state-of-the-...
Autores principales: | Handsel, Jennifer, Matthews, Brian, Knight, Nicola J., Coles, Simon J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496104/ https://www.ncbi.nlm.nih.gov/pubmed/34620215 http://dx.doi.org/10.1186/s13321-021-00535-x |
Ejemplares similares
-
InChI, the IUPAC International Chemical Identifier
por: Heller, Stephen R, et al.
Publicado: (2015) -
STOUT: SMILES to IUPAC names using neural machine translation
por: Rajan, Kohulan, et al.
Publicado: (2021) -
Detection of IUPAC and IUPAC-like chemical names
por: Klinger, Roman, et al.
Publicado: (2008) -
The status of the InChI project and the InChI trust
por: Heller, Stephen, et al.
Publicado: (2010) -
Status of the InChI algorithm and InChI trust
por: Heller, Stephen
Publicado: (2012)